如图4,在三角形ABC中,以BC为直径的圆交AB于点D,角ACD=角ABC
1、求证:CA是圆的切线?2、若点E是BC上的一点,已知BE=6,tan角ABC=2\3,tan角AEC=5\3,求圆的直径?...
1、求证:CA是圆的切线?
2、若点E是BC上的一点,已知BE=6,tan角ABC=2\3,tan角AEC=5\3,求圆的直径? 展开
2、若点E是BC上的一点,已知BE=6,tan角ABC=2\3,tan角AEC=5\3,求圆的直径? 展开
3个回答
展开全部
1。证明:连结CD。
因为 BC是圆O的直径,
所以 角BDC=90度,
所以 角ABC+角BCD=90度,
因为 角ACD=角ABC,
所以 角ACD+角BCD=90度,即:角ACB=90度,
所以 AC垂直于BC,
因为 BC是圆O的直径,
所以 CA是圆O的切线。
2。解:因为 角ACB=90度,tan角ABC=2/3,tan角AEC=5/3,
所以 AC/BC=2/3,AC/EC=5/3
所以 2BC=3AC,5EC=3AC,
所以 2BC=5EC=5(BC--BE),
因为 BE=6,
所以 2BC=5(BC--6)=5BC--30,
3BC=30,
BC=10,
因为 BC就是圆的直径,
所以 圆的直径是30。
因为 BC是圆O的直径,
所以 角BDC=90度,
所以 角ABC+角BCD=90度,
因为 角ACD=角ABC,
所以 角ACD+角BCD=90度,即:角ACB=90度,
所以 AC垂直于BC,
因为 BC是圆O的直径,
所以 CA是圆O的切线。
2。解:因为 角ACB=90度,tan角ABC=2/3,tan角AEC=5/3,
所以 AC/BC=2/3,AC/EC=5/3
所以 2BC=3AC,5EC=3AC,
所以 2BC=5EC=5(BC--BE),
因为 BE=6,
所以 2BC=5(BC--6)=5BC--30,
3BC=30,
BC=10,
因为 BC就是圆的直径,
所以 圆的直径是30。
展开全部
(1)证明:∵BC是直径,
∴∠BDC=90°,
∴∠ABC+∠DCB=90°,
∵∠ACD=∠ABC,
∴∠ACD+∠DCB=90°,
∴BC⊥CA,∴CA是圆的切线.
(2)解:在Rt△AEC中,tan∠AEC=53,
∴ACEC=53,
EC=35AC,
在Rt△ABC中,tan∠ABC=23,
∴ACBC=23,
BC=32AC,
∵BC-EC=BE,BE=6,
∴32AC-
35AC=6,
解得:AC=203,
∴BC=32×203=10,
答:圆的直径是10.
∴∠BDC=90°,
∴∠ABC+∠DCB=90°,
∵∠ACD=∠ABC,
∴∠ACD+∠DCB=90°,
∴BC⊥CA,∴CA是圆的切线.
(2)解:在Rt△AEC中,tan∠AEC=53,
∴ACEC=53,
EC=35AC,
在Rt△ABC中,tan∠ABC=23,
∴ACBC=23,
BC=32AC,
∵BC-EC=BE,BE=6,
∴32AC-
35AC=6,
解得:AC=203,
∴BC=32×203=10,
答:圆的直径是10.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
那个满意回答错了。这是正确答案。
(1)证明:∵BC是直径,
∴∠BDC=90°,
∴∠ABC+∠DCB=90°,
∵∠ACD=∠ABC,
∴∠ACD+∠DCB=90°,
∴BC⊥CA,∴CA是圆的切线.
(2)解:在Rt△AEC中,tan∠AEC=5 3 ,
∴AC EC =5 3 ,
EC=3 5 AC,
在Rt△ABC中,tan∠ABC=2 3 ,
∴AC BC =2 3 ,
BC=3 2 AC,
∵BC-EC=BE,BE=6,
∴3 2 AC-3 5 AC=6,
解得:AC=20 3 ,
∴BC=3 2 ×20 3 =10,
答:圆的直径是10. 分号打不出来空格是分号、如三分之二十、二分之三ac等
(1)证明:∵BC是直径,
∴∠BDC=90°,
∴∠ABC+∠DCB=90°,
∵∠ACD=∠ABC,
∴∠ACD+∠DCB=90°,
∴BC⊥CA,∴CA是圆的切线.
(2)解:在Rt△AEC中,tan∠AEC=5 3 ,
∴AC EC =5 3 ,
EC=3 5 AC,
在Rt△ABC中,tan∠ABC=2 3 ,
∴AC BC =2 3 ,
BC=3 2 AC,
∵BC-EC=BE,BE=6,
∴3 2 AC-3 5 AC=6,
解得:AC=20 3 ,
∴BC=3 2 ×20 3 =10,
答:圆的直径是10. 分号打不出来空格是分号、如三分之二十、二分之三ac等
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询