展开全部
f'(x)=1/x-ax+1=(-ax^2+x+1)/x
a=0时,f'(x)=(x+1)/x>0恒成立,
f(x)递增区间为定义域(0,+∞)
a<0时,t=-ax^2+x+1为开口朝上的抛物线
对称轴 x=1/(2a)<0, x=0,t=1
x>0,t>1>0恒成立,f(x) 当x>0时,递增
a>0时,f'(x)>0,x> 0 即-ax^2+x+1>0 ,x>0
即ax^2-x-1<0 ===> 0< x< [1+√(1+4a)]/2
f'(x)<0,x>0 ==> x> [1+√(1+4a)]/2
综上所述
当a≤0时,f(x)递增区间为(0,+∞)
当a>0时,f(x)递增区间为(0, 1/2+√(1+4a) /2)
f(x)递减区间为 ( 1/2+√(1+4a) /2 , +∞)
a=0时,f'(x)=(x+1)/x>0恒成立,
f(x)递增区间为定义域(0,+∞)
a<0时,t=-ax^2+x+1为开口朝上的抛物线
对称轴 x=1/(2a)<0, x=0,t=1
x>0,t>1>0恒成立,f(x) 当x>0时,递增
a>0时,f'(x)>0,x> 0 即-ax^2+x+1>0 ,x>0
即ax^2-x-1<0 ===> 0< x< [1+√(1+4a)]/2
f'(x)<0,x>0 ==> x> [1+√(1+4a)]/2
综上所述
当a≤0时,f(x)递增区间为(0,+∞)
当a>0时,f(x)递增区间为(0, 1/2+√(1+4a) /2)
f(x)递减区间为 ( 1/2+√(1+4a) /2 , +∞)
展开全部
f'(x)=1/x-ax+1=(-ax^2+x+1)/x
a=0时,f'(x)=(x+1)/x>0恒成立,
f(x)递增区间为定义域(0,+∞)
a<0时,当b^2-4ac>0时,t=-ax^2+x+1为开口朝上的抛物线
对称轴 x=1/(2a)<0, x=0,t=1
x>0,t>1>0恒成立,f(x) 当x>0时,递增
当b^2-4ac=0或<0时,f(x) 当x>0时,递增
a>0时,f'(x)>0,x> 0 即-ax^2+x+1>0 ,x>0
即ax^2-x-1<0 ===> 0< x< [1+√(1+4a)]/2
f'(x)<0,x>0 ==> x> [1+√(1+4a)]/2
综上所述
当a≤0时,f(x)递增区间为(0,+∞)
当a>0时,f(x)递增区间为(0, 1/2+√(1+4a) /2a)
f(x)递减区间为 ( 1/2+√(1+4a) /2a , +∞)
a=0时,f'(x)=(x+1)/x>0恒成立,
f(x)递增区间为定义域(0,+∞)
a<0时,当b^2-4ac>0时,t=-ax^2+x+1为开口朝上的抛物线
对称轴 x=1/(2a)<0, x=0,t=1
x>0,t>1>0恒成立,f(x) 当x>0时,递增
当b^2-4ac=0或<0时,f(x) 当x>0时,递增
a>0时,f'(x)>0,x> 0 即-ax^2+x+1>0 ,x>0
即ax^2-x-1<0 ===> 0< x< [1+√(1+4a)]/2
f'(x)<0,x>0 ==> x> [1+√(1+4a)]/2
综上所述
当a≤0时,f(x)递增区间为(0,+∞)
当a>0时,f(x)递增区间为(0, 1/2+√(1+4a) /2a)
f(x)递减区间为 ( 1/2+√(1+4a) /2a , +∞)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询