如图,在平行四边形ABCD中,AC的垂直平分线分别交CD、AB于点F和点E,AB=4,BC=根号3,AC=3倍根号3,求EF长

飘渺的绿梦
2012-04-23 · TA获得超过3.5万个赞
知道大有可为答主
回答量:3091
采纳率:100%
帮助的人:1788万
展开全部
过C作CG∥FE交AB的延长线于G、作CH⊥BG交BG于H。
由勾股定理,有:CH^2=AC^2-(AB+BH)^2=BC^2-BH^2,
∴(3√3)^2-(4+BH)^2=(√3)^2-BH^2,
∴27-16-8BH-BH^2=3-BH^2, ∴8BH=27-16-3=8, ∴BH=1。
∴AH=AB+BH=4+1=5。
再由勾股定理,有:CH=√(AC^2-AH^2)=√(27-25)=√2。

∵CG∥FE、AC⊥FE, ∴CG⊥AC。
由∠CAH=∠GAC、∠AHC=∠ACG=90°,得:△ACH∽△AGC, ∴CH/CG=AH/AC,
∴CG=CH×AC/AH=√2×3√3/5=3√6/5。

∵ABCD是平行四边形,∴FC∥EG,又CG∥FE,∴EFCG是平行四边形,∴EF=CG=3√6/5。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式