如图,在△ABC中,AD平分∠BAC,BE⊥AC,垂足为E,交AD于点F,试说明∠AFE=1/2(∠ABC+∠C)
2个回答
2012-04-23
展开全部
证明:
∵BE⊥AC
∴∠FEA=90
∴∠AFE=180-90-∠DAC=90-∠DAC
∵∠DAC=∠BAD=1/2∠A
∠A=180-(∠ABC+C)
∴∠AFE=90-1/2∠A
=90-[180-(∠ABC+∠C)]1/2
=90-90+1/2∠ABC+1/2∠C
=1/2(∠ABC+∠C)
∵BE⊥AC
∴∠FEA=90
∴∠AFE=180-90-∠DAC=90-∠DAC
∵∠DAC=∠BAD=1/2∠A
∠A=180-(∠ABC+C)
∴∠AFE=90-1/2∠A
=90-[180-(∠ABC+∠C)]1/2
=90-90+1/2∠ABC+1/2∠C
=1/2(∠ABC+∠C)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询