数学问题(关于函数的最大值和最小值)
把长为24厘米的铁丝剪成两段,一段做成圆形,一段做成正方形。问如何剪法,才能使圆和正方形面积之和最小?各位注意:是最小!!!...
把长为24厘米的铁丝剪成两段,一段做成圆形,一段做成正方形。问如何剪法,才能使圆和正方形面积之和最小?
各位注意:是最小!!! 展开
各位注意:是最小!!! 展开
8个回答
展开全部
设N=3.1415926
正方形边长为 A
正方形面积S1=A×A
圆形面积 S2=0.5×N×((24-4×A)÷(2×N))^2
=2×(6-A)^2÷N
=(2A^2-24A+72)÷N
S=S1+S2=((N+2)A^2-24A-72)/N
化简为常数×(A-(12/(N+2) )^2+常数
A=12/(N+2)=2.333时最小
9.332的正方形 14.668的圆形
正方形边长为 A
正方形面积S1=A×A
圆形面积 S2=0.5×N×((24-4×A)÷(2×N))^2
=2×(6-A)^2÷N
=(2A^2-24A+72)÷N
S=S1+S2=((N+2)A^2-24A-72)/N
化简为常数×(A-(12/(N+2) )^2+常数
A=12/(N+2)=2.333时最小
9.332的正方形 14.668的圆形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设圆的半径为R,正方形的边长为X
S1=∏R的平方
S2=X的平方
S=(S1+S2)min即为所求
2∏R+4X≤24
用公式联立求解即可
S1=∏R的平方
S2=X的平方
S=(S1+S2)min即为所求
2∏R+4X≤24
用公式联立求解即可
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x 24-x
(x/4)^2+Pi*((24-x)/(2*Pi))^2
二次曲线求极值
(x/4)^2+Pi*((24-x)/(2*Pi))^2
二次曲线求极值
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
根据周长相同,圆的面积最大,得:正方形24厘米,与圆0厘米
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
一段为x,另一段为24-x,则面积为pi*((x/2*pi)**2)+((24-x)/4)**2,求二次方程的最值,限制条件,在0<=x<=24区间范围去极值即可。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询