微积分 微分方程问题。验证y=c1 *e^x+c2*e^(2x) (c1,c2是任意常数)为二阶微分方程y''-3y'+2y=0的通解。
验证y=c1*e^x+c2*e^(2x)(c1,c2是任意常数)为二阶微分方程y''-3y'+2y=0的通解。并求方程满足初始条件【y(0)=0,y‘(0)=1】的特解。...
验证y=c1 *e^x+c2*e^(2x) (c1,c2是任意常数)为二阶微分方程y''-3y'+2y=0的通解。并求方程满足初始条件【y(0)=0,y‘(0)=1】的特解。
展开
2个回答
展开全部
1.验证y=c1 *e^x+c2*e^(2x) (c1,c2是任意常数)为二阶微分方程y''-3y'+2y=0的通解。
对比y=c1 *e^(λ1x)+c2*e^(λ2x)
很明显在这里 λ1=1,λ2=2 只要验证下它们是否是特征方程λ^2-3λ+2=0的根就行了。
很明显 (λ1)^2-3λ1+2=1-3+2=0
(λ2)^2-3λ2+2=4-6+2=0
所以y=c1 *e^x+c2*e^(2x) (c1,c2是任意常数)为二阶微分方程y''-3y'+2y=0的通解
2.求方程满足初始条件【y(0)=0,y‘(0)=1】的特解。
y‘(x)=c1 *e^x+2c2*e^(2x)
y(0)=c1+c2=0
y‘(0)=c1+2c2=1
解得: c1=-1,c2=1
特解:y=- e^x+e^(2x)
对比y=c1 *e^(λ1x)+c2*e^(λ2x)
很明显在这里 λ1=1,λ2=2 只要验证下它们是否是特征方程λ^2-3λ+2=0的根就行了。
很明显 (λ1)^2-3λ1+2=1-3+2=0
(λ2)^2-3λ2+2=4-6+2=0
所以y=c1 *e^x+c2*e^(2x) (c1,c2是任意常数)为二阶微分方程y''-3y'+2y=0的通解
2.求方程满足初始条件【y(0)=0,y‘(0)=1】的特解。
y‘(x)=c1 *e^x+2c2*e^(2x)
y(0)=c1+c2=0
y‘(0)=c1+2c2=1
解得: c1=-1,c2=1
特解:y=- e^x+e^(2x)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询