微积分 微分方程问题。验证y=c1 *e^x+c2*e^(2x) (c1,c2是任意常数)为二阶微分方程y''-3y'+2y=0的通解。

验证y=c1*e^x+c2*e^(2x)(c1,c2是任意常数)为二阶微分方程y''-3y'+2y=0的通解。并求方程满足初始条件【y(0)=0,y‘(0)=1】的特解。... 验证y=c1 *e^x+c2*e^(2x) (c1,c2是任意常数)为二阶微分方程y''-3y'+2y=0的通解。并求方程满足初始条件【y(0)=0,y‘(0)=1】的特解。 展开
逆流而上的鸟
2012-04-24 · TA获得超过1623个赞
知道小有建树答主
回答量:446
采纳率:50%
帮助的人:471万
展开全部
1.验证y=c1 *e^x+c2*e^(2x) (c1,c2是任意常数)为二阶微分方程y''-3y'+2y=0的通解。
对比y=c1 *e^(λ1x)+c2*e^(λ2x)
很明显在这里 λ1=1,λ2=2 只要验证下它们是否是特征方程λ^2-3λ+2=0的根就行了。
很明显 (λ1)^2-3λ1+2=1-3+2=0
(λ2)^2-3λ2+2=4-6+2=0
所以y=c1 *e^x+c2*e^(2x) (c1,c2是任意常数)为二阶微分方程y''-3y'+2y=0的通解
2.求方程满足初始条件【y(0)=0,y‘(0)=1】的特解。
y‘(x)=c1 *e^x+2c2*e^(2x)
y(0)=c1+c2=0
y‘(0)=c1+2c2=1
解得: c1=-1,c2=1
特解:y=- e^x+e^(2x)
usbf
2012-04-24 · TA获得超过865个赞
知道小有建树答主
回答量:483
采纳率:50%
帮助的人:228万
展开全部
c1,c2是任意常数,所以只要y=c1 *e^x+c2*e^(2x) 满足原二阶微分方程,则它就是原二阶微分方程的通解代入验证即可。
求特解就是求满足y(0)=0,y‘(0)=1的c1,c2,也就是利用y(0)=0,y‘(0)=1求c1,c2即可
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式