
已知a^2+2a=4,求1/(a+1)-1/(a^2-1)÷(a+1)/(a^2-2a+1)的值。
2个回答
展开全部
a^2+2a=4
所以(a+1)²=5
1/(a+1)-1/(a^2-1)÷(a+1)/(a^2-2a+1)
=1/(a+1)-1/【(a-1)(a+1)】÷(a+1)/(a-1)²
=1/(a+1)-1/【(a-1)(a+1)】×(a-1)²/(a+1)
=1/(a+1)-(a-1)/(a+1)²
=(a+1-a+1)/(a+1)²
=2/(a+1)²
=2/5
所以(a+1)²=5
1/(a+1)-1/(a^2-1)÷(a+1)/(a^2-2a+1)
=1/(a+1)-1/【(a-1)(a+1)】÷(a+1)/(a-1)²
=1/(a+1)-1/【(a-1)(a+1)】×(a-1)²/(a+1)
=1/(a+1)-(a-1)/(a+1)²
=(a+1-a+1)/(a+1)²
=2/(a+1)²
=2/5
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询