在平面直角坐标系XOY中,点p(x,y)为动点,已知点A(根号2,0)
直线PA与PB的斜率之积为-1/2。(1)求动点P的轨迹E的方程;【已解决,答案x^2/2+y^2=1(x≠±根号2,y≠0)(2)过点F(1,0)的直线L交曲线E于M,...
直线PA与PB的斜率之积为-1/2。
(1)求动点P的轨迹E的方程;【已解决,答案x^2/2+y^2=1(x≠±根号2,y≠0)
(2)过点F(1,0)的直线L交曲线E于M,N两点,以MN为对角线的正方形的第三个顶点恰在Y轴上,求直线L方程
B(负根号2,0), 展开
(1)求动点P的轨迹E的方程;【已解决,答案x^2/2+y^2=1(x≠±根号2,y≠0)
(2)过点F(1,0)的直线L交曲线E于M,N两点,以MN为对角线的正方形的第三个顶点恰在Y轴上,求直线L方程
B(负根号2,0), 展开
2个回答
展开全部
(1)x^2/2+y^2=1(x≠±根号2,y≠0)
(2)设l的方程为:x=ty+1与x^2/2+y^2=1联立
消去x得:(ty+1)^2+2y^2-2=0
即 (t^2+2)y^2+2ty-1=0
设M(x1,y1),N(x2,y2),MN中点为Q(x',y')
韦达定理:
y1+y2=-2t/(t^2+2),y1y2=-1/(t^2+2)
y'=-t/(t^2+2),x'=ty'+1=2/(t^2+2)
MN的垂直平分线m的方程为:
y+t/(t^2+2)=-t[x-2/(t^2+2)]
令x=0,得 y=t/(t^2+2)
∴m与y轴交点T(0,t/(t^2+2)
∵以MN为对角线的正方形的第三个顶点恰在Y轴上
∴T即是该点∴TM⊥TN
∴向量TM·向量TN=0
(x1,y1-t/(t^2+2) )·(x2,y2-t/(t^2+2))=0
x1x2+[y1-t/(t^2+2)][y2-t/(t^2+2)]=0
(ty1+1)(ty2+1)+y1y2-t/(t^2+2)×(y1+y2)+t^2/(t^2+2)^2=0
(t^2+1)y1y2+[t-t/(t^2+2)](y1+y2)+t^2/(t^2+2)^2+1=0
-(t^2+1)/(t^2+2)+(t^3+t)/(t^2+2)×(-2t)/(t^2+2)+t^2/(t^2+2)^2+1=0
==>t^4=1==>t=±1
∴ 直线L方程为x= ±y+1 即x+y-1=0或x-y-1=0
(2)设l的方程为:x=ty+1与x^2/2+y^2=1联立
消去x得:(ty+1)^2+2y^2-2=0
即 (t^2+2)y^2+2ty-1=0
设M(x1,y1),N(x2,y2),MN中点为Q(x',y')
韦达定理:
y1+y2=-2t/(t^2+2),y1y2=-1/(t^2+2)
y'=-t/(t^2+2),x'=ty'+1=2/(t^2+2)
MN的垂直平分线m的方程为:
y+t/(t^2+2)=-t[x-2/(t^2+2)]
令x=0,得 y=t/(t^2+2)
∴m与y轴交点T(0,t/(t^2+2)
∵以MN为对角线的正方形的第三个顶点恰在Y轴上
∴T即是该点∴TM⊥TN
∴向量TM·向量TN=0
(x1,y1-t/(t^2+2) )·(x2,y2-t/(t^2+2))=0
x1x2+[y1-t/(t^2+2)][y2-t/(t^2+2)]=0
(ty1+1)(ty2+1)+y1y2-t/(t^2+2)×(y1+y2)+t^2/(t^2+2)^2=0
(t^2+1)y1y2+[t-t/(t^2+2)](y1+y2)+t^2/(t^2+2)^2+1=0
-(t^2+1)/(t^2+2)+(t^3+t)/(t^2+2)×(-2t)/(t^2+2)+t^2/(t^2+2)^2+1=0
==>t^4=1==>t=±1
∴ 直线L方程为x= ±y+1 即x+y-1=0或x-y-1=0
东莞大凡
2024-08-07 广告
2024-08-07 广告
作为东莞市大凡光学科技有限公司的一员,我们深知Matlab圆点标定板在相机标定中的重要性。该标定板通过均匀分布的圆点,帮助精确计算相机参数,优化成像效果。Matlab强大的编程功能,使得我们能够灵活设计标定板,调整圆点大小、数量和分布,以满...
点击进入详情页
本回答由东莞大凡提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询