计算(x+sinx)/(1+cosx)的原函数
1个回答
展开全部
∫ (x+sinx)/(1+cosx) dx
=∫ x/(1+cosx) dx+∫ sinx/(1+cosx) dx
=∫ x/(1+cosx) dx+∫ 2sin(x/2)cos(x/2)/(2cos²(x/2)) dx
=∫ x/(2cos²(x/2)) dx+∫ tan(x/2) dx
=∫ xsec²(x/2) d(x/2)+∫ tan(x/2) dx
=∫ xd(tan(x/2))+∫ tan(x/2) dx
=xtan(x/2)-∫ tan(x/2) dx+∫ tan(x/2) dx
=xtan(x/2)+C
=∫ x/(1+cosx) dx+∫ sinx/(1+cosx) dx
=∫ x/(1+cosx) dx+∫ 2sin(x/2)cos(x/2)/(2cos²(x/2)) dx
=∫ x/(2cos²(x/2)) dx+∫ tan(x/2) dx
=∫ xsec²(x/2) d(x/2)+∫ tan(x/2) dx
=∫ xd(tan(x/2))+∫ tan(x/2) dx
=xtan(x/2)-∫ tan(x/2) dx+∫ tan(x/2) dx
=xtan(x/2)+C
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询