展开全部
Sn=n^2
n>=2时,
an=Sn-S(n-1)=n^2-(n-1)^2=2n-1
n=1时,a1=S1=1也满足上式
bn=1/ana(n+1)
=1/[(2n-1)(2n+1)]
=(1/2)[(2n+1)-(2n-1)]/[(2n-1)(2n+1)]
=(1/2)[1/(2n-1)-1/(2n+1)]
Tn=B1+B2+……+Bn
=(1/2)[(1/1-1/3)+(1/3-1/5)+……+1/(2n-1)-1/(2n+1)]
=(1/2)[1-1/(2n+1)]
=n/(2n+1)
n>=2时,
an=Sn-S(n-1)=n^2-(n-1)^2=2n-1
n=1时,a1=S1=1也满足上式
bn=1/ana(n+1)
=1/[(2n-1)(2n+1)]
=(1/2)[(2n+1)-(2n-1)]/[(2n-1)(2n+1)]
=(1/2)[1/(2n-1)-1/(2n+1)]
Tn=B1+B2+……+Bn
=(1/2)[(1/1-1/3)+(1/3-1/5)+……+1/(2n-1)-1/(2n+1)]
=(1/2)[1-1/(2n+1)]
=n/(2n+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询