已知数列{An}中,A1=1.前n项和为Sn且Sn+1=3/2Sn+1.求数列{An}的通项公式
2个回答
展开全部
S(n+1)=3/2Sn+1
S(n+1)+2=3/2Sn+3
S(n+1)+2=3/2(Sn+2)
[S(n+1)+2]/[(Sn+2)]=3/2
所以Sn+2是以3/2为公比的等比数列
Sn+2=(S1+2)*q^(n-1)
Sn+2=(a1+2)*q^(n-1)
Sn+2=(1+2)*(3/2)^(n-1)
Sn=3*(3/2)^(n-1)-2
Sn=3*(3/2)^(n-1)-2
S(n-1)=3*(3/2)^(n-2)-2
an=Sn-S(n-1)
=3*(3/2)^(n-1)-2-3*(3/2)^(n-2)+2
=3*3/2*(3/2)^(n-2)-3*(3/2)^(n-2)
=(9/2-3)*(3/2)^(n-2)
=3/2*(3/2)^(n-2)
=(3/2)^(n-1)
S(n+1)+2=3/2Sn+3
S(n+1)+2=3/2(Sn+2)
[S(n+1)+2]/[(Sn+2)]=3/2
所以Sn+2是以3/2为公比的等比数列
Sn+2=(S1+2)*q^(n-1)
Sn+2=(a1+2)*q^(n-1)
Sn+2=(1+2)*(3/2)^(n-1)
Sn=3*(3/2)^(n-1)-2
Sn=3*(3/2)^(n-1)-2
S(n-1)=3*(3/2)^(n-2)-2
an=Sn-S(n-1)
=3*(3/2)^(n-1)-2-3*(3/2)^(n-2)+2
=3*3/2*(3/2)^(n-2)-3*(3/2)^(n-2)
=(9/2-3)*(3/2)^(n-2)
=3/2*(3/2)^(n-2)
=(3/2)^(n-1)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |