求解一道高数三重积分题目
2个回答
展开全部
一、用柱面坐标,区域表示为:0≤θ≤2π,0≤ρ≤√3,1/3ρ^2≤z≤√(4-ρ^2)。积分∫∫∫zdv=∫(0到2π)dθ∫(0到√3)ρdρ∫(1/3ρ^2到(4-ρ^2))zdz=13π/4
二、比第一种做法简单是用直角坐标,“先二后一”的积分顺序,先对xy积分再对z积分,积分∫∫∫zdv=∫(1到2)zdz∫∫(x^2+y^2≤4-z^2) dxdy+∫(0到1)zdz∫∫(x^2+y^2≤3z) dxdy=∫(1到2) z*π(4-z^2)dz+∫(0到1) z*π(3z)dz=13π/4
二、比第一种做法简单是用直角坐标,“先二后一”的积分顺序,先对xy积分再对z积分,积分∫∫∫zdv=∫(1到2)zdz∫∫(x^2+y^2≤4-z^2) dxdy+∫(0到1)zdz∫∫(x^2+y^2≤3z) dxdy=∫(1到2) z*π(4-z^2)dz+∫(0到1) z*π(3z)dz=13π/4
更多追问追答
追问
我觉得第二种更难理解啊
追答
教材上有
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询