在三角形ABC中,已知∠B=∠C,点D,E,F分别在边BC,AC,AB上,BD=CE,BF=CD,那么∠FDE与∠B相等吗?
3个回答
展开全部
在△BDF和△CED中
∵BD=CE(已知)
∵∠B=∠C(已知)
∵BF=CD(已知)
∴△BDF≌△CED(SAS)
∴∠BFD=∠CDE
∵△BDF中,∠BFD+∠BDF+∠B=180°
∴∠CDE+∠BDF+∠B=180°
∵∠CDE+∠BDF+∠EDF=180°
∴∠FDE=∠B
∵BD=CE(已知)
∵∠B=∠C(已知)
∵BF=CD(已知)
∴△BDF≌△CED(SAS)
∴∠BFD=∠CDE
∵△BDF中,∠BFD+∠BDF+∠B=180°
∴∠CDE+∠BDF+∠B=180°
∵∠CDE+∠BDF+∠EDF=180°
∴∠FDE=∠B
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
解:在△BDF和△CED中
BD=CE(已知)
∠B=∠C(已知)
BF=CD(已知)
所以△BDF≌△CED(S.A.S)
得∠BFD=∠CDE(全等三角形对应角相等)
因为∠BFD,∠BDF,∠B为△BFD的内角(已知)
所以∠BFD+∠BDF+∠B=180度(三角形内角和)
所以∠CDE+∠BDF+∠B=180度(等式性质)
而∠CDE+∠BDF+∠EDF=180度(等式性质)
所以∠FDE=∠B (等量代换)
最佳哦~亲
BD=CE(已知)
∠B=∠C(已知)
BF=CD(已知)
所以△BDF≌△CED(S.A.S)
得∠BFD=∠CDE(全等三角形对应角相等)
因为∠BFD,∠BDF,∠B为△BFD的内角(已知)
所以∠BFD+∠BDF+∠B=180度(三角形内角和)
所以∠CDE+∠BDF+∠B=180度(等式性质)
而∠CDE+∠BDF+∠EDF=180度(等式性质)
所以∠FDE=∠B (等量代换)
最佳哦~亲
参考资料: 2黄(位育中学,初一八班,班主任,同教五班)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询