1、已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M

1、已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.(1)如图①,当∠MAN点... 1、已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB、DC(或它们的延长线)于点M、N,AH⊥MN于点H.
(1)如图①,当∠MAN点A旋转到BM=DN时,请你直接写出AH与AB的数量关系:
AH=AB

(2)如图②,当∠MAN绕点A旋转到BM≠DN时,(1)中发现的AH与AB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;
(3)如图③,已知∠MAN=45°,AH⊥MN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)
展开
飘渺的绿梦
推荐于2016-12-02 · TA获得超过3.5万个赞
知道大有可为答主
回答量:3091
采纳率:100%
帮助的人:1801万
展开全部
第一个问题:你已经写出答案了。 具体的方法有:
1、通过证明△ABM≌△AHM(或△ABM≌△AHN)得出结论。
  ∵AM=AN、AH⊥MN, ∴∠HAM=∠MAN/2=45°/2。
  ∵ABCD是正方形, ∴∠BAD=90°,而∠MAN=45°, ∴∠BAM+∠DAN=45°。
  ∵ABCD是正方形, ∴∠ABM=∠ADN=90°、AB=AD,又AM=AN, ∴△ABM≌△ADN,
  ∴∠BAM=∠DAN,而∠BAM+∠DAN=45°, ∴∠BAM=45°/2。
  由AM=AM、∠BAM=∠HAM=45°/2、∠ABM=∠AHM=90°,得:△ABM≌△AHM,
  ∴AB=AH。

2、通过证明AM平分∠BMH,然后由角平分线性质得出结论。
  ∵ABCD是正方形, ∴∠BAD=90°,而∠MAN=45°, ∴∠BAM+∠DAN=45°。
  ∵ABCD是正方形, ∴∠ABM=∠ADN=90°、AB=AD,又AM=AN, ∴△ABM≌△ADN,
  ∴∠BAM=∠DAN,而∠BAM+∠DAN=45°, ∴∠BAM=45°/2。
  ∴∠AMB=90°-45°/2。
  ∵∠MAN=45°、AM=AN, ∴∠AMH=(180°-∠MAN)/2=90°-45°/2。
  ∵∠AMB=∠AMH=90°-45°/2,AB⊥BM、AH⊥HM, ∴AB=AH。

3、通过第二个问题的方法得出结论。[此处略]

第二个问题:
延长MB至E,使BE=DN。
∵ABCD是正方形, ∴AB=AD、∠ABE=∠ADN=90°,又BE=DN, ∴△ABE≌△ADN,
∴AE=AN、∠BAE=∠DAN。
∵ABCD是正方形, ∴∠BAD=90°,又∠MAN=45°, ∴∠BAM+∠DAN=45°,
∴∠BAM+∠BAE=45°, ∴∠MAE=45°。
由AE=AN、AM=AM、∠MAE=∠MAN=45°,得:△MAE≌△MAN, ∴AB=AH(对应高)。

第三个问题:
由锐角三角函数定义,有:tan∠MAH=MH/AH=2/AH、 tan∠NAH=NH/AH=3/AH。
而∠MAN=∠MAH+∠NAH=45°, ∴tan(∠MAH+∠NAH)=1,
∴(tan∠MAH+tan∠NAH)/(1-tan∠MAH·tan∠NAH)=1,
∴tan∠MAH+tan∠NAH=1-tan∠MAH·tan∠NAH,
∴2/AH+3/AH=1-(2/AH)(3/AH), ∴5AH=AH^2-6, ∴AH^2-5AH-6=0,
∴(AH-6)(AH+1)=0。
显然有:AH+1>0, ∴AH=6。
hg一体化不放假
2013-01-18
知道答主
回答量:4
采纳率:0%
帮助的人:6069
展开全部
BM+DN=MN成立.
证明:如图,把△ADN绕点A顺时针旋转90°,
得到△ABE,则可证得E、B、M三点共线(图形画正确).
∴∠EAM=90°-∠NAM=90°-45°=45°,
又∵∠NAM=45°,
∴△AEM≌△ANM,
∴ME=MN,
∵ME=BE+BM=DN+BM,
∴DN+BM=MN;
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式