已知(x^y)^m × (xy^(n) z)^3 × Y^(4)z^6=x^5 × y^8 × z^p,求m+n+p的值
2个回答
展开全部
(x^y)^m × (xy^(n) z)^3 × Y^(4)z^6=x^5 × y^8 × z^p
左式=(x^y)^m × (xy^(n) z)^3 × Y^(4)z^6
=x^m*y^m*x^3*y^(3n)*z^3*y^4*z^6
=x^(m+3)*y^(m+3n+4)*z^(3+6)
=x^(m+3)*y^(m+3n+4)*z^9
即x^(m+3)*y^(m+3n+4)*z^9=x^5 × y^8 × z^p
所以
m+3=5,m=5-3=2
m+3n+4=8,3n=8-4-m=4-2=2,n=2/3
p=9
故m+n+p=2+2/3+9=11(2/3)
左式=(x^y)^m × (xy^(n) z)^3 × Y^(4)z^6
=x^m*y^m*x^3*y^(3n)*z^3*y^4*z^6
=x^(m+3)*y^(m+3n+4)*z^(3+6)
=x^(m+3)*y^(m+3n+4)*z^9
即x^(m+3)*y^(m+3n+4)*z^9=x^5 × y^8 × z^p
所以
m+3=5,m=5-3=2
m+3n+4=8,3n=8-4-m=4-2=2,n=2/3
p=9
故m+n+p=2+2/3+9=11(2/3)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询