求不定积分∫[x^2√(4-x^2)]dx
展开全部
令x=2sint 则t=arcsinx/2
√4-x^2=2cost ,dx=2costdt
原式=∫4sin^2t4cosx^2tdt
=2∫(1-cos4t)dt
=2t-1/2∫cos4td4t
=2t-sin2tcos2t+c
=2t-2sintcost(1-2sin^2t)+c
=2arcsinxx/2-x√(4-x^2)/2+x^3√(4-x^2)/4+C
√4-x^2=2cost ,dx=2costdt
原式=∫4sin^2t4cosx^2tdt
=2∫(1-cos4t)dt
=2t-1/2∫cos4td4t
=2t-sin2tcos2t+c
=2t-2sintcost(1-2sin^2t)+c
=2arcsinxx/2-x√(4-x^2)/2+x^3√(4-x^2)/4+C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫x^2√(4-x^2)dx
=∫(x^2-4)√(4-x^2)dx+4∫√(4-x^2)dx
=∫-√(4-x^2)^3dx+4∫√(4-x^2)dx
= -x√(4-x^2)^3-∫3x^2√(4-x^2)dx+4∫√(4-x^2)dx
4∫x^2√(4-x^2)dx=-x√(4-x^2)^3+4∫√(4-x^2)dx
∫x^2√(4-x^2)dx=(-1/4)x√(4-x^2)^3+∫√(4-x^2)dx
=(-1/4)x√(4-x^2)^3+(1/2)x√(4-x^2)+2arcsin(x/2)+C
∫√(4-x^2)dx=x√(4-x^2)+∫x^2dx/√(4-x^2)=x√(4-x^2)-∫√(4-x^2)dx+4∫dx/√(4-x^2)
2∫√(4-x^2)dx=x√(4-x^2)+4∫d(x/2)/√(1-x^2/4)
∫√(4-x^2)=(1/2)x√(4-x^2)+2arcsin(x/2)
=∫(x^2-4)√(4-x^2)dx+4∫√(4-x^2)dx
=∫-√(4-x^2)^3dx+4∫√(4-x^2)dx
= -x√(4-x^2)^3-∫3x^2√(4-x^2)dx+4∫√(4-x^2)dx
4∫x^2√(4-x^2)dx=-x√(4-x^2)^3+4∫√(4-x^2)dx
∫x^2√(4-x^2)dx=(-1/4)x√(4-x^2)^3+∫√(4-x^2)dx
=(-1/4)x√(4-x^2)^3+(1/2)x√(4-x^2)+2arcsin(x/2)+C
∫√(4-x^2)dx=x√(4-x^2)+∫x^2dx/√(4-x^2)=x√(4-x^2)-∫√(4-x^2)dx+4∫dx/√(4-x^2)
2∫√(4-x^2)dx=x√(4-x^2)+4∫d(x/2)/√(1-x^2/4)
∫√(4-x^2)=(1/2)x√(4-x^2)+2arcsin(x/2)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2014-10-07
展开全部
1/4√(4-x^2) * (x^2-2)+arcssinx/2+c
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询