1个回答
展开全部
∫ x/(x² + 2x + 2) dx
= ∫ x/[(x + 1)² + 1] dx
令x + 1 = tany,dx = sec²y dy
= ∫ (tany - 1)/(tan²y + 1) · sec²y dy
= ∫ (tany - 1)/sec²y · sec²y dy
= ∫ (tany - 1) dy
= - ln|cosy| - y + C
= - ln|1/√((x² + 1) + 1)| - arctan(x + 1) + C
= (1/2)ln(x² + 2x + 2) - arctan(x + 1) + C
= ∫ x/[(x + 1)² + 1] dx
令x + 1 = tany,dx = sec²y dy
= ∫ (tany - 1)/(tan²y + 1) · sec²y dy
= ∫ (tany - 1)/sec²y · sec²y dy
= ∫ (tany - 1) dy
= - ln|cosy| - y + C
= - ln|1/√((x² + 1) + 1)| - arctan(x + 1) + C
= (1/2)ln(x² + 2x + 2) - arctan(x + 1) + C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询