I=∫∫∫z√(x^2+y^2)dv,其中Ω由y=-√(2x-x^2)和平面z=0,z=1,y=0围成。 5
2个回答
展开全部
y=-√(2x-x²)两边平方后得:x²+y²-2x=0,在xoy面内是以(1,0)为圆心,1为半径的圆,且y<0,因此是下半圆
用柱坐标
∫∫∫z√(x^2+y^2)dv
=∫∫∫zr²dzdrdθ
=∫[-π/2--->0]dθ∫[0--->2cosθ] r²dr∫[0--->1] zdz
=(1/2)∫[-π/2--->0]dθ∫[0--->2cosθ] r²z² |[0--->1]dr
=(1/2)∫[-π/2--->0]dθ∫[0--->2cosθ] r²dr
=(1/6)∫[-π/2--->0] r³[0--->2cosθ] dθ
=(1/6)∫[-π/2--->0] 8cos³θ dθ
=(4/3)∫[-π/2--->0] cos²θ d(sinθ)
=(4/3)∫[-π/2--->0] (1-sin²θ) d(sinθ)
=(4/3)(sinθ-(1/3)sin³θ) [-π/2--->0]
=(4/3)(1-1/3)
=8/9
用柱坐标
∫∫∫z√(x^2+y^2)dv
=∫∫∫zr²dzdrdθ
=∫[-π/2--->0]dθ∫[0--->2cosθ] r²dr∫[0--->1] zdz
=(1/2)∫[-π/2--->0]dθ∫[0--->2cosθ] r²z² |[0--->1]dr
=(1/2)∫[-π/2--->0]dθ∫[0--->2cosθ] r²dr
=(1/6)∫[-π/2--->0] r³[0--->2cosθ] dθ
=(1/6)∫[-π/2--->0] 8cos³θ dθ
=(4/3)∫[-π/2--->0] cos²θ d(sinθ)
=(4/3)∫[-π/2--->0] (1-sin²θ) d(sinθ)
=(4/3)(sinθ-(1/3)sin³θ) [-π/2--->0]
=(4/3)(1-1/3)
=8/9
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询