高中数学必修5 已知a大于0,b大于0,且a+b+c=1。求证1/a+1/b+1/c大于等于9
4个回答
展开全部
(a+b+c)(1/a+1/b+1/c)=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
利用基本不等式b/a+a/b≧2(√b/a×a/b)=2同理的
b/c+c/b≧2(√b/c×c/b)=2
c/a+a/c≧2(√c/a×a/c)=2
∴1/a+1/b+1/c≧9
利用基本不等式b/a+a/b≧2(√b/a×a/b)=2同理的
b/c+c/b≧2(√b/c×c/b)=2
c/a+a/c≧2(√c/a×a/c)=2
∴1/a+1/b+1/c≧9
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
:因为a+b+c=1,所以1/a+1/b+1/c=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c=3+(b/a+a/b)+(c/a+a/c)+(c/b+b/c)>=3+2+2+2=9(当a=b=c时取等号)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
问题有误,c也必须大于零,可有较多方法解答。glk7271的解答比较好,是高考所承认的解法但不具有一般性。
一般而言,这类问题都可以用柯西不等式,但高考不承认,但该不等式对想优等生来说必不可少,建议你去查资料,其证明也非常简单,建议记住。
一般而言,这类问题都可以用柯西不等式,但高考不承认,但该不等式对想优等生来说必不可少,建议你去查资料,其证明也非常简单,建议记住。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询