
∫(0到1)(x+1)*e^(x²+2x)dx
展开全部
∫(0到1)(x+1)*e^(x²+2x)dx=1/2×∫(0到1) e^((x+1)²-1)d(x+1)²=1/(2e)×∫(0到1) e^((x+1)²)d(x+1)²,被积函数的原函数是e^((x+1)²),所以结果是1/(2e)×(e^4-e)=(e^3-1)/2
来自:求助得到的回答
展开全部
∫(0到1)(x+1)*e^(x²+2x)dx
=1/2∫(0到1)e^(x²+2x)d(x²+2x)
=1/2e^(x²+2x)[0,1]
=e^3/2-1/2
=1/2∫(0到1)e^(x²+2x)d(x²+2x)
=1/2e^(x²+2x)[0,1]
=e^3/2-1/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫(0到1)(x+1)*e^(x²+2x)dx
=∫(0到1)e^(x²+2x)d(x²+2x)
=e^(x²+2x)(0到1)
=e³-1
=∫(0到1)e^(x²+2x)d(x²+2x)
=e^(x²+2x)(0到1)
=e³-1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫(0到1)(x+1)*e^(x²+2x)dx
=(1/2)[0,1]∫e^(x²+2x)d(x²+2x)
=(1/2)[0,1]e^(x²+2x)
=(1/2)[e³-1]
=(e³-1)/2
=(1/2)[0,1]∫e^(x²+2x)d(x²+2x)
=(1/2)[0,1]e^(x²+2x)
=(1/2)[e³-1]
=(e³-1)/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
∫(0→1)(x+1)*e^(x²+2x)dx
=(1/2)∫(0→1)(2x+2)*e^(x²+2x)dx
=(1/2)∫(0→1)*e^(x²+2x)d(x²+2x)
=e^(x²+2x)/2 (0→1)
=(e^3-1)/2
=(1/2)∫(0→1)(2x+2)*e^(x²+2x)dx
=(1/2)∫(0→1)*e^(x²+2x)d(x²+2x)
=e^(x²+2x)/2 (0→1)
=(e^3-1)/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询