在△ABC中,AC/AB=cosB/cosC (1)证明:B=C (2)若cosA=-1/3,求si
在△ABC中,AC/AB=cosB/cosC(1)证明:B=C(2)若cosA=-1/3,求sin(4B+π/3)的值...
在△ABC中,AC/AB=cosB/cosC
(1)证明:B=C
(2)若cosA=-1/3,求sin(4B+π/3)的值 展开
(1)证明:B=C
(2)若cosA=-1/3,求sin(4B+π/3)的值 展开
1个回答
展开全部
1、AC/AB=cosB/cosC,
根据正弦定理,
AC/AB=sinB/sinC,
cosB/cosC=sinB/sinC,
sinB/cosB=sinC/cosC,
tanB=tanC,
∵0<B<π,0<C<π,
∴B=C。
2、cosA=-1/3,
三角形是等腰三角形,作BC边上的高AD,
A/2是锐角,
cosA/2=√[(1+cosA)/2]=√3/3,
cosA/2=AD/AB=sinB=√3/3,
B是锐角,
sinB=√3/3,
cosB=√[1-(sinB)^2]=√6/3,
因cosA<0,A是钝角,B+C<π/2,2B<π/2,
sin2B=2sinBcosB=2√2/3,
cos2B=√[1-(sin2B)^2]=1/3,
sin4B=2sin2Bcos2B=2*(2√2/3)*(1/3)=4√2/9,
由sin2B=2√2/3可得,
π/4<2B<π/2,
π/2<4B<π,
4B为钝角,
cos4B=-√[1-(sin4B)^2]=-7/9,
sin(4B+π/3)=sin(4B)*cos(π/3)+sin(π/3)*cos(4B)
=(4√2/9)*(1/2)+(√3/2)*(-7/9)
=(4√2-7√3)/18.
根据正弦定理,
AC/AB=sinB/sinC,
cosB/cosC=sinB/sinC,
sinB/cosB=sinC/cosC,
tanB=tanC,
∵0<B<π,0<C<π,
∴B=C。
2、cosA=-1/3,
三角形是等腰三角形,作BC边上的高AD,
A/2是锐角,
cosA/2=√[(1+cosA)/2]=√3/3,
cosA/2=AD/AB=sinB=√3/3,
B是锐角,
sinB=√3/3,
cosB=√[1-(sinB)^2]=√6/3,
因cosA<0,A是钝角,B+C<π/2,2B<π/2,
sin2B=2sinBcosB=2√2/3,
cos2B=√[1-(sin2B)^2]=1/3,
sin4B=2sin2Bcos2B=2*(2√2/3)*(1/3)=4√2/9,
由sin2B=2√2/3可得,
π/4<2B<π/2,
π/2<4B<π,
4B为钝角,
cos4B=-√[1-(sin4B)^2]=-7/9,
sin(4B+π/3)=sin(4B)*cos(π/3)+sin(π/3)*cos(4B)
=(4√2/9)*(1/2)+(√3/2)*(-7/9)
=(4√2-7√3)/18.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询