已知:椭圆C:x^2/a^2+y^2/b^2=1的左右焦点为F1,F2,e=1/3,过F1的直线l交椭圆C于AB两点,|AF2|、|AB|、|BF
已知:椭圆C:x^2/a^2+y^2/b^2=1的左右焦点为F1,F2,e=1/3,过F1的直线l交椭圆C于AB两点,|AF2|、|AB|、|BF2|成等差数列,且|AB...
已知:椭圆C:x^2/a^2+y^2/b^2=1的左右焦点为F1,F2,e=1/3,过F1的直线l交椭圆C于AB两点,|AF2|、|AB|、|BF2|成等差数列,且|AB|=4
(1)求椭圆C的方程;(2)M,N是椭圆C上的两点,若线段MN被直线x=1平分,证明:线段MN的中垂线过定点 展开
(1)求椭圆C的方程;(2)M,N是椭圆C上的两点,若线段MN被直线x=1平分,证明:线段MN的中垂线过定点 展开
1个回答
展开全部
做右准线为:x = -a^2/c、x = a^2/c
按椭圆定义:
A到椭圆右准线距离 = AF2/e ,∴A到椭圆左准线距离 = (2a^2/c) - (AF2/e)
同理,B到椭圆左准线距离 = (2a^2/c) - (BF2/e)
同样按椭圆定义:e = AF1/[(2a^2/c) - (AF2/e)] = 1/3
∴AF1 = [(2a^2/c) - (AF2/e)]/3
同理BF1 = [(2a^2/c) - (BF2/e)]/3,将两式相加:
4 = |AB| = [(4a^2/c) - {(AF2 + BF2)/e}]/3 ,∵|AF2|、|AB|、|BF2|成等差数列,∴AF2 + BF2 = 8
∴4 = [(4a^2/c) - 24]/3 ,∴a^2 = 9c解得a = 9e = 3
∴椭圆C的方程:(x^2/9) + (y^2/8) = 1
(2)设M(x1,y1)N(x2,y2)分别代入椭圆方程并相减、整理:
{(y2)^2 - (y1)^2}/{(x2)^2 - (x1)^2} = -b^2/a^2 = -8/9
即{[(y2)-(y1)]/[(x2)-(x1)]}·{[(y2)+(y1)]/[(x2)+(x1)]} = -8/9
设直线MN斜率k,则k = (y2)-(y1)]/[(x2)-(x1)
设线段MN中点G(X0,y0),则y0= [(y2)+(y1)]/2,x0 = [(x2)+(x1)]/2
于是,上式变为:k·(y0/x0) = -8/9
∵线段MN被直线x=1平分,∴k·y0 = -8/9
易得MN中垂线的斜率k1 = -1/k = (9/8)y0
∴根据点斜式,MN中垂线的方程L:
y - y0 = [(9/8)y0]·(x - x0)
即y = (y0/8)·(9x - 1)
当x = 1/9时,y = 0
因此(1/9 ,0)就是所求的定点
按椭圆定义:
A到椭圆右准线距离 = AF2/e ,∴A到椭圆左准线距离 = (2a^2/c) - (AF2/e)
同理,B到椭圆左准线距离 = (2a^2/c) - (BF2/e)
同样按椭圆定义:e = AF1/[(2a^2/c) - (AF2/e)] = 1/3
∴AF1 = [(2a^2/c) - (AF2/e)]/3
同理BF1 = [(2a^2/c) - (BF2/e)]/3,将两式相加:
4 = |AB| = [(4a^2/c) - {(AF2 + BF2)/e}]/3 ,∵|AF2|、|AB|、|BF2|成等差数列,∴AF2 + BF2 = 8
∴4 = [(4a^2/c) - 24]/3 ,∴a^2 = 9c解得a = 9e = 3
∴椭圆C的方程:(x^2/9) + (y^2/8) = 1
(2)设M(x1,y1)N(x2,y2)分别代入椭圆方程并相减、整理:
{(y2)^2 - (y1)^2}/{(x2)^2 - (x1)^2} = -b^2/a^2 = -8/9
即{[(y2)-(y1)]/[(x2)-(x1)]}·{[(y2)+(y1)]/[(x2)+(x1)]} = -8/9
设直线MN斜率k,则k = (y2)-(y1)]/[(x2)-(x1)
设线段MN中点G(X0,y0),则y0= [(y2)+(y1)]/2,x0 = [(x2)+(x1)]/2
于是,上式变为:k·(y0/x0) = -8/9
∵线段MN被直线x=1平分,∴k·y0 = -8/9
易得MN中垂线的斜率k1 = -1/k = (9/8)y0
∴根据点斜式,MN中垂线的方程L:
y - y0 = [(9/8)y0]·(x - x0)
即y = (y0/8)·(9x - 1)
当x = 1/9时,y = 0
因此(1/9 ,0)就是所求的定点
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询