数列﹛an﹜满足a1=1,1/2a(n+1)=1/2an+1(n∈N*)

数列an满足a1=11/2a(n+1)=1/2an+1(n∈N*)1.求证数列1/an是等差数列2设Tn=a1a2+a2a3+...+anan+1,若Tn≧a恒成立,求a... 数列an满足a1=1 1/2a(n+1)=1/2an+1(n∈N*)
1.求证数列1/an是等差数列
2 设Tn=a1a2+a2a3+...+anan+1,若Tn≧a恒成立,求a的取值范围
展开
鸣人真的爱雏田
2012-04-29 · TA获得超过1.9万个赞
知道大有可为答主
回答量:2415
采纳率:0%
帮助的人:3867万
展开全部
解:
1, 1/2a(n+1)=1/2an+1
那么1/a(n+1)=1/an +2,且1/a1=1,
所以数列{1/an}是首项为1公差为2的等差数列;
2,1/an=1+2(n-1)=2n-1,
an=1/(2n-1)
ana(n+1)=1/(2n-1)*1/(2n+1)=1/2*[1/(2n-1)-1/(2n+1)]
那么
Tn=a1a2+a2a3+...+anan+1
=1/2*{1/1-1/3+1/3-1/5+......+1/(2n-1)-1/(2n+1)]}
=1/2*[1-1/(2n+1)]
可见当n趋于无穷时,Tn可趋近于最大值1/2,n=1时,Tn取到最小值1/3,
可见a≤1/3。
O(∩_∩)O~
石念小石头
2012-04-29 · TA获得超过1198个赞
知道小有建树答主
回答量:288
采纳率:0%
帮助的人:209万
展开全部
解:1,证:由题,1/2a(n+1)=1/2an+1
1/a(n+1) -1/an=2
即:{1/an}是首项为1,等差是2的等差数列
且 1/an=1+(n-1)*2=2n-1 ( n∈N*)
2,由题:an=1/(2n-1)
Tn=1*1/3+1/3 *1/5+.....+1/(2n-1) *1/(2n+1)
=1/2 *[1-1/3+1/3-1/5+......+1/(2n-1)-1/(2n+1)]
=1/2 *[1-1/(2n+1)]
=n/(2n+1)
limn/(2n+1)=1/2≥a,当n趋于无穷大时 T1=1*1/3=1/3<1/2
所以:a的取值范围是a小于等于1/3
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
s40860
2012-04-29 · TA获得超过438个赞
知道小有建树答主
回答量:234
采纳率:100%
帮助的人:63.2万
展开全部
1.∵1/2a(n+1)=1/2an+1
∴1/2a(n+1)-1/2an=1
即:1/a(n+1)-1/an=2
∴{1/an}是公差为2的等差数列.

2.1/a1=1,于是:1/an=1+2(n-1)=2n-1
∴an=1/(2n-1)
而:a1a2+a2a3+...+ana(n+1)=1*1/3+1/3*1/5+…+1/(2n-1)*1/(2n+1)=1/2*[1-1/3+1/3-1/5+1/5-…+1/(2n-1)-1/(2n+1)]=1/2*[1-1/(2n+1)]=n/(2n+1)>16/33,解得:n>16.
追问
我讨厌复制答案的, 你出局了,(#‵′)凸,都不看看是不是一样的题目,你的答案我早就看过了
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式