高一数学必修2圆与直线的解题方法和类型.
2个回答
展开全部
圆的标准方程:在平面直角坐标系中,以点O(a,b)为圆心,以r为半径的圆的标准方程是(x-a)^2+(y-b)^2=r^2。
圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。
圆的离心率e=0,在圆上任意一点的曲率半径都是r。
〖圆与直线的位置关系判断〗
平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:
如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:
当x=-C/A<x1或x=-C/A>x2时,直线与圆相离
当x1<x=-C/A<x2时,直线与圆相交
当x=-C/A=x1或x=-C/A=x2时,直线与圆相切
直线和圆的方程
(1)理解直线的斜率的概念,掌握过两点的直线的斜率公式.掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.
(2)掌握两条直线平行与垂直的条件、两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的关系.
(3)了解二元一次不等式表示平面区域.
(4)了解线性规划的意义,并会简单的应用.
(5)了解解析几何的基本思想,了解坐标法.
(6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程.
3.在解答有关直线的问题时,要注意(1)在确定直线的斜率、倾斜角时,首先要注意斜率存在的条件,其次是倾斜角的范围;(2)在利用直线的截距式解题时,要注意防止由于“零截距”而造成丢解的情况;(3)在利用直线的点斜式、斜截式解题时,要注意检验斜率不存在的情况,防止丢解;(4)要灵活运用定比分点公式、中点坐标公式,在解决有关分割问题、对称问题时可以简化运算;(5)掌握对称问题的四种基本类型的解法;(6)在由两直线的位置关系确定有关参数的值或其范围时,要充分利用分类讨论、数形结合、特殊值检验等基本的数学思想方法.
直线的方程
1.直线的倾斜角、斜率及直线的方向向量
(1)直线的倾斜角
在平面直角坐标系中,对于一条与x轴相交的直线,如果把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角.
当直线和x轴平行或重合时,我们规定直线的倾斜角为0°.
可见,直线倾斜角的取值范围是0°≤α<180°.
(2)直线的斜率
倾斜角α不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k表示,即k=tanα(α≠90°).
倾斜角是90°的直线没有斜率;倾斜角不是90°的直线都有斜率,其取值范围是(-∞,+∞).
(3)直线的方向向量
设F1(x1,y1)、F2(x2,y2)是直线上不同的两点,则向量 =(x2-x1,y2-y1)称为直线的方向向量.向量 =(1, )=(1,k)也是该直线的方向向量,k是直线的斜率.
(4)求直线斜率的方法
①定义法:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.
②公式法:已知直线过两点P1(x1,y1)、P2(x2,y2),且x1≠x2,则斜率k= .
③方向向量法:若a=(m,n)为直线的方向向量,则直线的斜率k= n/m.
平面直角坐标系内,每一条直线都有倾斜角,但不是每一条直线都有斜率.
对于直线上任意两点P1(x1,y1)、P2(x2,y2),当x1=x2时,直线斜率k不存在,倾斜角α=90°;当x1≠x2时,直线斜率存在,是一实数,并且k≥0时,α=arctank,k<0时,α=π+arctank.
圆的一般方程:把圆的标准方程展开,移项,合并同类项后,可得圆的一般方程是x^2+y^2+Dx+Ey+F=0。和标准方程对比,其实D=-2a,E=-2b,F=a^2+b^2。
圆的离心率e=0,在圆上任意一点的曲率半径都是r。
〖圆与直线的位置关系判断〗
平面内,直线Ax+By+C=0与圆x^2+y^2+Dx+Ey+F=0的位置关系判断一般方法是:
1.由Ax+By+C=0,可得y=(-C-Ax)/B,(其中B不等于0),代入x^2+y^2+Dx+Ey+F=0,即成为一个关于x的一元二次方程f(x)=0。利用判别式b^2-4ac的符号可确定圆与直线的位置关系如下:
如果b^2-4ac>0,则圆与直线有2交点,即圆与直线相交
如果b^2-4ac=0,则圆与直线有1交点,即圆与直线相切
如果b^2-4ac<0,则圆与直线有0交点,即圆与直线相离
2.如果B=0即直线为Ax+C=0,即x=-C/A,它平行于y轴(或垂直于x轴),将x^2+y^2+Dx+Ey+F=0化为(x-a)^2+(y-b)^2=r^2。令y=b,求出此时的两个x值x1、x2,并且规定x1<x2,那么:
当x=-C/A<x1或x=-C/A>x2时,直线与圆相离
当x1<x=-C/A<x2时,直线与圆相交
当x=-C/A=x1或x=-C/A=x2时,直线与圆相切
直线和圆的方程
(1)理解直线的斜率的概念,掌握过两点的直线的斜率公式.掌握直线方程的点斜式、两点式、一般式,并能根据条件熟练地求出直线方程.
(2)掌握两条直线平行与垂直的条件、两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的关系.
(3)了解二元一次不等式表示平面区域.
(4)了解线性规划的意义,并会简单的应用.
(5)了解解析几何的基本思想,了解坐标法.
(6)掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程.
3.在解答有关直线的问题时,要注意(1)在确定直线的斜率、倾斜角时,首先要注意斜率存在的条件,其次是倾斜角的范围;(2)在利用直线的截距式解题时,要注意防止由于“零截距”而造成丢解的情况;(3)在利用直线的点斜式、斜截式解题时,要注意检验斜率不存在的情况,防止丢解;(4)要灵活运用定比分点公式、中点坐标公式,在解决有关分割问题、对称问题时可以简化运算;(5)掌握对称问题的四种基本类型的解法;(6)在由两直线的位置关系确定有关参数的值或其范围时,要充分利用分类讨论、数形结合、特殊值检验等基本的数学思想方法.
直线的方程
1.直线的倾斜角、斜率及直线的方向向量
(1)直线的倾斜角
在平面直角坐标系中,对于一条与x轴相交的直线,如果把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角.
当直线和x轴平行或重合时,我们规定直线的倾斜角为0°.
可见,直线倾斜角的取值范围是0°≤α<180°.
(2)直线的斜率
倾斜角α不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k表示,即k=tanα(α≠90°).
倾斜角是90°的直线没有斜率;倾斜角不是90°的直线都有斜率,其取值范围是(-∞,+∞).
(3)直线的方向向量
设F1(x1,y1)、F2(x2,y2)是直线上不同的两点,则向量 =(x2-x1,y2-y1)称为直线的方向向量.向量 =(1, )=(1,k)也是该直线的方向向量,k是直线的斜率.
(4)求直线斜率的方法
①定义法:已知直线的倾斜角为α,且α≠90°,则斜率k=tanα.
②公式法:已知直线过两点P1(x1,y1)、P2(x2,y2),且x1≠x2,则斜率k= .
③方向向量法:若a=(m,n)为直线的方向向量,则直线的斜率k= n/m.
平面直角坐标系内,每一条直线都有倾斜角,但不是每一条直线都有斜率.
对于直线上任意两点P1(x1,y1)、P2(x2,y2),当x1=x2时,直线斜率k不存在,倾斜角α=90°;当x1≠x2时,直线斜率存在,是一实数,并且k≥0时,α=arctank,k<0时,α=π+arctank.
展开全部
首先要记住的是圆是熟悉的集合模型,95%以上的涉及圆与直线的题目都不用联立方程,要灵活运用到圆的几何性质
1、圆与直线的位置关系:相交,相切,相离,主要看圆心到直线的距离与半径比较
圆与圆的位置关系
这些是考的主要内容
2、利用圆的几何性质,这就要根据具体题目来看了
就我的经验来说主要有,圆内过圆心做弦的垂线,交点是弦的中点;切线长定理等等。这不太好说,最好拿具体题目来说。
就这样,有什么不懂的追问吧
1、圆与直线的位置关系:相交,相切,相离,主要看圆心到直线的距离与半径比较
圆与圆的位置关系
这些是考的主要内容
2、利用圆的几何性质,这就要根据具体题目来看了
就我的经验来说主要有,圆内过圆心做弦的垂线,交点是弦的中点;切线长定理等等。这不太好说,最好拿具体题目来说。
就这样,有什么不懂的追问吧
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询