如图1,在等腰梯形ABCD中,AD‖BE,E是AB的中点,过点E作EF‖BC,交CD于点F,AB=4,BC=6,AD=2
(1) 求点E到BC的距离(2) &nbs...
(1) 求点E到BC的距离(2) 点P为线段EF上的一个动点,过点P作PM⊥EF交BC于点M,过点M作MN∥AB,交折线ADC于点M,联结PN,设EP的长为x① 当点N在线段AD上时(如图2),求△PMN的周长② 当点N在线段CD上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,求出x的值;若不存在,请说明理由
展开
2个回答
展开全部
设EP=x
解:(1)如图1,过点E作EG⊥BC于点G.
∵E为AB的中点,
∴BE=1 2 AB=2
在Rt△EBG中,∠B=60°,∴∠BEG=30度.
∴BG=1 2 BE=1,EG= 2²-1²= 根号3
即点E到BC的距离为 根号3
(2)①当点N在线段AD上运动时,△PMN的形状不发生改变.
∵PM⊥EF,EG⊥EF,
∴PM∥EG,又EF∥BC,
∴四边形EPMG为平行四边形,
∴EP=GM,PM=EG= 3
同理MN=AB=4.
如图2,过点P作PH⊥MN于H,
∵MN∥AB,
∴∠NMC=∠B=60°,∠PMH=30度.
∴PH=½ PM= 根号3/2∴MH=PM•cos30°=3/2
则NH=MN-MH=4-3 /2 =5 /2
在Rt△PNH中,PN= NH2+PH2 = (5 /2 )2+( 3 / 2 )2 = 7
∴△PMN的周长=PM+PN+MN= 3 + 7 +4
②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角形.
当PM=PN时,如图3,作PR⊥MN于R,则MR=NR.
类似①,MR=3 /2 ,
∴MN=2MR=3.
∵△MNC是等边三角形,
∴MC=MN=3.
此时,x=EP=GM=BC-BG-MC=6-1-3=2.
当MP=MN时,
∵EG= 根号3 ,
∴MP=MN= 3 ,
∵∠B=∠C=60°,
∴△MNC是等边三角形,
∴MC=MN=MP= 根号3
此时,x=EP=GM=6-1- 根号3 =5-根号 3 ,
当NP=NM时,如图5,∠NPM=∠PMN=30度.
则∠PNM=120°,又∠MNC=60°,
∴∠PNM+∠MNC=180度.
因此点P与F重合,△PMC为直角三角形.
∴MC=PM•tan30°=1.
此时,x=EP=GM=6-1-1=4.
综上所述,当x=2或4或(5- 根号3 )时,△PMN为等腰三角形.
解:(1)如图1,过点E作EG⊥BC于点G.
∵E为AB的中点,
∴BE=1 2 AB=2
在Rt△EBG中,∠B=60°,∴∠BEG=30度.
∴BG=1 2 BE=1,EG= 2²-1²= 根号3
即点E到BC的距离为 根号3
(2)①当点N在线段AD上运动时,△PMN的形状不发生改变.
∵PM⊥EF,EG⊥EF,
∴PM∥EG,又EF∥BC,
∴四边形EPMG为平行四边形,
∴EP=GM,PM=EG= 3
同理MN=AB=4.
如图2,过点P作PH⊥MN于H,
∵MN∥AB,
∴∠NMC=∠B=60°,∠PMH=30度.
∴PH=½ PM= 根号3/2∴MH=PM•cos30°=3/2
则NH=MN-MH=4-3 /2 =5 /2
在Rt△PNH中,PN= NH2+PH2 = (5 /2 )2+( 3 / 2 )2 = 7
∴△PMN的周长=PM+PN+MN= 3 + 7 +4
②当点N在线段DC上运动时,△PMN的形状发生改变,但△MNC恒为等边三角形.
当PM=PN时,如图3,作PR⊥MN于R,则MR=NR.
类似①,MR=3 /2 ,
∴MN=2MR=3.
∵△MNC是等边三角形,
∴MC=MN=3.
此时,x=EP=GM=BC-BG-MC=6-1-3=2.
当MP=MN时,
∵EG= 根号3 ,
∴MP=MN= 3 ,
∵∠B=∠C=60°,
∴△MNC是等边三角形,
∴MC=MN=MP= 根号3
此时,x=EP=GM=6-1- 根号3 =5-根号 3 ,
当NP=NM时,如图5,∠NPM=∠PMN=30度.
则∠PNM=120°,又∠MNC=60°,
∴∠PNM+∠MNC=180度.
因此点P与F重合,△PMC为直角三角形.
∴MC=PM•tan30°=1.
此时,x=EP=GM=6-1-1=4.
综上所述,当x=2或4或(5- 根号3 )时,△PMN为等腰三角形.
展开全部
1.因为是等腰梯形,所以AB=CD=4,又因为E是AB中点,所以AE=EB=2,又因为角B=60度,过E作EG垂直于BC交与BC于G,在三角形BEG中,可以知道EB=2则BG=1,EG=根号3。
1:三角形PMN形状不会变,因为PM的长度是固定的=EG,而NM是平行于AB的,又因为是AN平行于BM可以知道ABMN是平行四边形所以AB=MN不论P点怎么移动,PM固定值MN也是固定值那么三角形两边固定则第三边一定固定,形状不会发生改变。
2:我现在没时间暂时没法帮你了。
1:三角形PMN形状不会变,因为PM的长度是固定的=EG,而NM是平行于AB的,又因为是AN平行于BM可以知道ABMN是平行四边形所以AB=MN不论P点怎么移动,PM固定值MN也是固定值那么三角形两边固定则第三边一定固定,形状不会发生改变。
2:我现在没时间暂时没法帮你了。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询