如图,已知抛物线y=ax^2+bx+c与x轴交于AB两点,与y轴交于点C,D为OC的中点
如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3:2.(1)...
如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,D为OC的中点,直线AD交抛物线于点E(2,6),且△ABE与△ABC的面积之比为3:2.
(1)求直线AD和抛物线的解析式;
(2)抛物线的对称轴与x轴相交于点F,点Q为直线AD上一点,且△ABQ与△ADF相似,直接写出点Q点的坐标. 展开
(1)求直线AD和抛物线的解析式;
(2)抛物线的对称轴与x轴相交于点F,点Q为直线AD上一点,且△ABQ与△ADF相似,直接写出点Q点的坐标. 展开
2个回答
展开全部
解:1,因为s△ABE:s△ABC=3:2, △ABE与△ABC都是底边为AB的三角形,所以6/OC=3/2,解得OC=4.即C(0,4),因为D是OC中点,所以D(0,2)。设过AD的直线为y=kx+2,把E(2,6)代入得y=2x+2 。 直线与x轴的交点A坐标为A(-1,0)。 因为抛物线过A,C,E, 所以解析式为y=-x²+3x+4. 2,因为抛物线的对称轴为x=3/2,所以F(3/2,0),要使△ABQ∽△ADF,须将DF向右平移3/2个单位,所以Q(2/3,10/3)。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询