先化简再求值(2X/X2-4 - 1/X+2)÷(X-1/X-2) X=√3-1
1个回答
展开全部
解:
原式=[2x/(x²-4)-1/(x+2)]÷[(x-1)/(x-2)]
={2x/[(x+2)(x-2)]-(x-2)/[(x+2)(x-2)]}×[(x-2)/(x-1)]
=(2x-x+2)/[(x+2)(x-2)]×[(x-2)/(x-1)]
=(x+2)/[(x+2)(x-2)]×[(x-2)/(x-1)]
=1/(x-1)
=1/(√3-1-1)
=1/(√3-2)
=(√3+2)/[(√3+2)(√3-2)]
=(√3+2)/(√3²-2²)
=(√3+2)/(3-4)
= -√3-2
原式=[2x/(x²-4)-1/(x+2)]÷[(x-1)/(x-2)]
={2x/[(x+2)(x-2)]-(x-2)/[(x+2)(x-2)]}×[(x-2)/(x-1)]
=(2x-x+2)/[(x+2)(x-2)]×[(x-2)/(x-1)]
=(x+2)/[(x+2)(x-2)]×[(x-2)/(x-1)]
=1/(x-1)
=1/(√3-1-1)
=1/(√3-2)
=(√3+2)/[(√3+2)(√3-2)]
=(√3+2)/(√3²-2²)
=(√3+2)/(3-4)
= -√3-2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询