已知:如图,点P是正方形ABCD的对角线AC上一点,过点P作EF DP,交AB于点E,交CD于点G,交BC的延长线于点F,(
已知:如图,点P是正方形ABCD的对角线AC上一点,过点P作EFDP,交AB于点E,交CD于点G,交BC的延长线于点F,(1)求证:DP=PF(2)若正方形ABCD的边长...
已知:如图,点P是正方形ABCD的对角线AC上一点,过点P作EF DP,交AB于点E,交CD于点G,交BC的延长线于点F,(1)求证:DP=PF(2)若正方形ABCD的边长为3,且CP=根号2,求线段AE的长度。
展开
1个回答
展开全部
(1)
∵EF⊥DP
∴∠DPF=90°
∵∠DCF=90°
∴PCFD为四点共圆
∠PDC=∠PFC
∠CPF=∠CDF
∵∠ACB=∠CPF+∠PFC=45°
∴∠PDF=∠PDC+∠CDF=∠CPF+∠PFC=45°
∵∠DFP=90°-∠PDF=45°
∴△DPF是直角等腰三角形
即:DP=PF
(2)作PK⊥BC交BC于K
在△CDP中
DP=√(CD^2+CP^2-2*CD*CP*Cos45°) (余弦定理)
=√(9+2-2*3*√2*Cos45°)
=√5
△CPK是直角三角形
∵CP=√2
∴PK=CK=1
∵PF=DP=√5
∴KF=2
∵CF=KF-CK=1
∴BF=BC+CF=4
∵KF/BF=PK/BE
∴BE=BF*PK/KF=4*1/2=2
即:AE=AB-BE=1
∵EF⊥DP
∴∠DPF=90°
∵∠DCF=90°
∴PCFD为四点共圆
∠PDC=∠PFC
∠CPF=∠CDF
∵∠ACB=∠CPF+∠PFC=45°
∴∠PDF=∠PDC+∠CDF=∠CPF+∠PFC=45°
∵∠DFP=90°-∠PDF=45°
∴△DPF是直角等腰三角形
即:DP=PF
(2)作PK⊥BC交BC于K
在△CDP中
DP=√(CD^2+CP^2-2*CD*CP*Cos45°) (余弦定理)
=√(9+2-2*3*√2*Cos45°)
=√5
△CPK是直角三角形
∵CP=√2
∴PK=CK=1
∵PF=DP=√5
∴KF=2
∵CF=KF-CK=1
∴BF=BC+CF=4
∵KF/BF=PK/BE
∴BE=BF*PK/KF=4*1/2=2
即:AE=AB-BE=1
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询