已知α,β∈(3π/4,π),sin(α+β)=-3/5,sin(β-π/4)=12/13,则sin(α+π/4)=?
3个回答
展开全部
α,β∈(3π/4,π)
故
a+b∈(3π/2,2π)
cos(a+b)>0
cos(a+b)=4/5
b-π/4∈(π/2,3π/4)
cos(b-π/4)<0
cos(b-π/4)=-5/13
sin(α+π/4)
=sin[(a+b)-(b-π/4)]
=sin(α+β)cos(b-π/4)-cos(a+b)sin(β-π/4)
=(-3/5)*(-5/13)-(4/5)*(12/13)
=15/65-48/65
=-33/65
故
a+b∈(3π/2,2π)
cos(a+b)>0
cos(a+b)=4/5
b-π/4∈(π/2,3π/4)
cos(b-π/4)<0
cos(b-π/4)=-5/13
sin(α+π/4)
=sin[(a+b)-(b-π/4)]
=sin(α+β)cos(b-π/4)-cos(a+b)sin(β-π/4)
=(-3/5)*(-5/13)-(4/5)*(12/13)
=15/65-48/65
=-33/65
追问
选项没这个啊 A-63/65 B 16/65 C33/65 D63/65
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询