在线性代数中如何求秩
3个回答
展开全部
先来说秩的思想,
一,首先,秩的引入是从矩阵来的,对吧!那么我们再来看一下,矩阵又是怎么来的,我们在线性代数时,都知道,矩阵的引入是为了来解决更为一般的方程组问题来引入的。
二,秩,它的首要目的是为了解决方程组解的问题,这样,你要是把一个矩阵化到阶梯形,再把它写成AX=B,分别写成方程组的形式,你会发现,当一个矩阵的行数n-r(A)是什么呢?是自由变量的个数,从而可以来解整个方程组,确定基础解系。
三,来回到你的问题上来吧,求秩的思想,一般方法,就是对矩阵进行且只能行变换,为什么?这就是它的思想,矩阵的是一个方程组的系数,要是在进行行变换的时侯同时进行列变换,想想后果是什么,后果很是严重,原来的方程组就是是原来的啦,所以只能求秩只能进行行变,这就是它的基本思想。当然啦别的求秩的方法也很多,但是都是以这个为根本的。
好,现在来说说如何求特征向量。
一,要先求出来特征值,也就是那个公式,当你把,“入”,求出来后,然后代入你那个式子,这时,就要那个,秩啦,我上面也说啦,“行数n-r(A)是什么呢?是自由变量的个数”,从而你可以求出对这个,“入”的基础解系,而这个解系就是它的所有的特征向量。
完毕!
注意:
我再说一下,我说的那个求秩只用行变化是以方程组为背景的。
实际上,根据,引理:对秩进行行变化,和列变化不改变矩阵的秩。
学习线性代数,我认为,
一,要把,各章节的关系搞懂,也就是要有个宏观的概念。
二,然后要把每一节的概念要真的弄懂。
三,线代在前两章对计算要求高,要细心,平时要这样
四,后几章,是抽像的,这时,更要抓本质,找关系,理清思路,抽像思维要练一下。
五,线代实在算起繁,但是我建议你把每一个题做完整,注意总结
希望对你有所帮助
一,首先,秩的引入是从矩阵来的,对吧!那么我们再来看一下,矩阵又是怎么来的,我们在线性代数时,都知道,矩阵的引入是为了来解决更为一般的方程组问题来引入的。
二,秩,它的首要目的是为了解决方程组解的问题,这样,你要是把一个矩阵化到阶梯形,再把它写成AX=B,分别写成方程组的形式,你会发现,当一个矩阵的行数n-r(A)是什么呢?是自由变量的个数,从而可以来解整个方程组,确定基础解系。
三,来回到你的问题上来吧,求秩的思想,一般方法,就是对矩阵进行且只能行变换,为什么?这就是它的思想,矩阵的是一个方程组的系数,要是在进行行变换的时侯同时进行列变换,想想后果是什么,后果很是严重,原来的方程组就是是原来的啦,所以只能求秩只能进行行变,这就是它的基本思想。当然啦别的求秩的方法也很多,但是都是以这个为根本的。
好,现在来说说如何求特征向量。
一,要先求出来特征值,也就是那个公式,当你把,“入”,求出来后,然后代入你那个式子,这时,就要那个,秩啦,我上面也说啦,“行数n-r(A)是什么呢?是自由变量的个数”,从而你可以求出对这个,“入”的基础解系,而这个解系就是它的所有的特征向量。
完毕!
注意:
我再说一下,我说的那个求秩只用行变化是以方程组为背景的。
实际上,根据,引理:对秩进行行变化,和列变化不改变矩阵的秩。
学习线性代数,我认为,
一,要把,各章节的关系搞懂,也就是要有个宏观的概念。
二,然后要把每一节的概念要真的弄懂。
三,线代在前两章对计算要求高,要细心,平时要这样
四,后几章,是抽像的,这时,更要抓本质,找关系,理清思路,抽像思维要练一下。
五,线代实在算起繁,但是我建议你把每一个题做完整,注意总结
希望对你有所帮助
Sievers分析仪
2024-10-13 广告
2024-10-13 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准...
点击进入详情页
本回答由Sievers分析仪提供
展开全部
1. 求向量组的秩的方法:
将向量组按列向量构造矩阵(a1,...,as)
对此矩阵用初等行变换(列变换也可用)化为梯矩阵
非零行数即向量组的秩.
2. 求矩阵的秩
对矩阵实施初等行变换化为梯矩阵
非零行数即矩阵的秩.
3. 二次型的秩即二次型的矩阵的秩
将向量组按列向量构造矩阵(a1,...,as)
对此矩阵用初等行变换(列变换也可用)化为梯矩阵
非零行数即向量组的秩.
2. 求矩阵的秩
对矩阵实施初等行变换化为梯矩阵
非零行数即矩阵的秩.
3. 二次型的秩即二次型的矩阵的秩
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
分几种情况的,一些资料书上都有专门的方法。 要懂得举一反三
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询