初中数学有关圆的知识

潘佳乐1
2012-05-09 · TA获得超过151个赞
知道答主
回答量:40
采纳率:0%
帮助的人:21.9万
展开全部
想知道是不是轴对称.只要找出一条对称轴.对称轴两边是完全相等的.可以重合.
旋转可以参考http://wenku.baidu.com/view/365545dc5022aaea998f0fe0.html
圆.圆的直径连接两头(一端在圆上,一端在直径上)
这个角是直角

这叫垂径定理

圆周角定理 是
多少
——乘圆面积或周长=这个扇行的面积或那条弧
360
别的我就不知道了
.圆是以圆心为对称中心的中心对称图形;围绕圆心旋转任意一个角度α,都能够与原来的重合.

2.顶点在圆心的角叫做圆心角.圆心到弦的距离叫做弦心距.

圆幂定理(相交弦定理、切割线定理及其推论(割线定理)统称为圆幂定理)

切线长定理

垂径定理

圆周角定理

弦切角定理

四圆定理

3.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等.

4.在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等.

5.把整个圆周等分成360份,每一份弧是1°的弧.圆心角的度数和它所对的弧的度数相等.

6.圆是中心对称图形,即圆绕其对称中心(圆心)旋转180°后能够与原来图形重合,这一性质不难理解.圆和其他中心对称图形不同,它还具有旋转不变性,即围绕圆心旋转任意一个角度,都能够与原来的图形重合.
7.垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧
8.(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧

(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧

(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧

9.圆的两条平行弦所夹的弧相等
10.(1)一条弧所对的圆周角等于它所对的圆心角的一半.

(2)同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧也相等.

(3)半圆(或直径)所对的圆周角是直角;90°的圆周角所对的弦是直径.

(4)如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.

11.(1)圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.

(2)垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.

(3)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

(4)弦的垂直平分线经过圆心,并且平分弦所对的两条弦.

(5)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.

(6)圆的两条平行弦所夹的弧度数相等.

12.圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.

垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.
13.平分弦(不是直径)的直径垂直与弦,并且平分弦所对的两条弧.
14.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等,所对的弦的弦心距也相等.
15.在同圆或等圆中,相等的弦所对的弧相等,所对的圆心角相等,所对的弦的弦心距也相等.
16.同一个弧有无数个相对的圆周角.
17.弧的比等于弧所对的圆心角的比.
18.圆的内接四边形的对角互补或相等.
19.不在同一条直线上的三个点能确定一个圆.
20.直径是圆中最长的弦.
21.一条弦把一个圆分成一个优弧和一个劣弧.

补充:九点共圆定理
三角形三边的中点,三条高的垂足,垂心与各顶点连线的中点这9点共圆.
九点圆是几何学史上的一个著名问题,最早提出九点圆的是英国的培亚敏.俾几〔Benjamin Beven〕,问题发表在1804年的一本英国杂志上.第一个完全证明此定理的是法国数学家彭赛列〔1788-1867〕.也有说是1820-1821年间由法国数学家热而工〔1771-1859〕与彭赛列首先发表的.一位高中教师费尔巴哈〔1800-1834〕也曾研究了九点圆,他的证明发表在1822年的《直边三角形的一些特殊点的性质》一文里,文中费尔巴哈还获得了九点圆的一些重要性质〔如下列的性质3〕,故有人称九点圆为费尔巴哈圆.
九点圆具有许多有趣的性质,例如:
1.三角形的九点圆的半径是三角形的外接圆半径之半;
2.九点圆的圆心在欧拉线上,且恰为垂心与外心连线的中点;
3.三角形的九点圆与三角形的内切圆,三个旁切圆均相切〔费尔巴哈定理〕.
4.九点圆是一个垂心组共有的九点圆,所以九点圆共与四个内切圆,十二个旁切圆相切.
5.九点圆心(V),重心(G),垂心(H),外心(O)四点共线且OG=2VG VO=2HO
九点圆圆心的重心坐标的计算跟垂心、外心一样麻烦。
事先定义的变量与垂心、外心一样:
d1,d2,d3分别是三角形三个顶点连向另外两个顶点向量的点乘(句子很长^_^)。
c1=d2d3,c2=d1d3,c3=d1d2;c=c1+c2+c3。
重心坐标:( (2c1+c2+c3)/4c,(2c2+c1+c3)/4c,(2c3+c1+c2)/4c )。
yong_czy
2012-04-30 · 超过18用户采纳过TA的回答
知道答主
回答量:57
采纳率:0%
帮助的人:44.9万
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
liuzhangyu08
2012-05-04 · 超过13用户采纳过TA的回答
知道答主
回答量:79
采纳率:0%
帮助的人:29.1万
展开全部
圆不就是圆上的任何一点到圆心的距离都相等,人后相同的圆心角对应的炫也相等啊!
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
深湛且明快灬牡蛎
2012-05-02 · TA获得超过278个赞
知道小有建树答主
回答量:357
采纳率:100%
帮助的人:145万
展开全部
SAD
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
邰辉荀暄和
2019-09-06 · TA获得超过3814个赞
知道大有可为答主
回答量:3075
采纳率:29%
帮助的人:404万
展开全部
(1)、连接MC,由勾股定理易知OC=√3,∴c(0,√3)或(0,-√3﹚
(2)、连接AP,则∠PAB=∠PQB∵∠G+∠PBO=90°,∠PAB+∠PBO=90°∴∠G=∠PQB
∵∠QOH=∠GOP∴⊿GOP∽⊿QHO∴OH·OG=OP·OQ
再证⊿AQO∽⊿PBO∴OP·OQ=OA·OB∴OH·OG=OA·OB=3
(3)如图,E为的上的一个动点
这句话漏了字,无法做,等我查到了资料再做
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(3)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式