如图,直线y=-3/4x+6分别与x轴、y轴交于A、B两点;直线y=5/4x与AB交于点C,过点A且平行于y轴的直线交于点D
如图,直线y=-3/4x+6分别与x轴、y轴交于A、B两点;直线y=5/4x与AB交于点C,过点A且平行于y轴的直线交于点D。点E从点A出发,以每秒1个单位的速度沿x轴向...
如图,直线y=-3/4x+6分别与x轴、y轴交于A、B两点;直线y=5/4x与AB交于点C,过点A且平行于y轴的直线交于点D。点E从点A出发,以每秒1个单位的速度沿x轴向左运动。过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN。设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒)。
⑴求点C的坐标
⑵当0<x<5时,求S于t之间的函数关系式。
⑶求⑵中S的最大值
⑷当t>0时,直接写出点(4,9/2)在正方形PQMN的内部时t的取值范围 展开
⑴求点C的坐标
⑵当0<x<5时,求S于t之间的函数关系式。
⑶求⑵中S的最大值
⑷当t>0时,直接写出点(4,9/2)在正方形PQMN的内部时t的取值范围 展开
展开全部
解:
(1)
将两直线的方程联立:
y=-(3/4)x+6,
y=(5/4)x,
解得: x=3, y=15/4,
即C点坐标为: C(3,15/4)。
(2)
由题意易知以下四点坐标:
A(8,0), E(8-t,0), P(8-t,3t/4), Q(8-t,10-5t/4)。
当0<t<5时, 3<8-t<8, 所以直线PQ位于点C右边, 所以,|PQ|=10-2t。
正方形PQMN或者有一部分在三角形ACD外,或者完全在三角形ACD内。
①正方形PQMN有一部分在三角形ACD外。
此时应有|PQ|>|AE|,即 10-2t>t,亦即 t<10/3。
此时,阴影部分面积
S=|PQ||AE|
=(10-2t)t
=-2t^2+10t
=-2(t-5/2)^2+25/2。
②正方形PQMN完全在三角形ACD内。
此时应有|PQ|≤|AE|,即 10-2t≤t,亦即 t≥10/3。
此时,阴影部分面积
S=|PQ|^2
=(10-2t)^2
=4(t-5)^2。
所以,0<t<5 时,
-2(t-5/2)^2+25/2, 0<t<10/3,
S =
4(t-5)^2, 10/3≤t<5。
(3)
①0<t<10/3:
此时,S=-2(t-5/2)^2+25/2,抛物线开口向下,对称轴 t=5/2∈(0,10/3),
t=5/2时,S取最大值25/2。
②10/3≤t<5:
此时,S=4(t-5)^2,抛物线开口向上,对称轴 t=5,
t=10/3 时,S取最大值100/9。
由①②知,当t=5/2时,S取得最大值25/2。
(4)
点F(4,9/2)的位置如图所示:
要使F在正方形内,有两种情况:
①
直线PQ在点C和点F之间,并且F到直线PQ距离小于正方形边长|PQ|。
即
3<8-t<4,
4-(8-t)<10-2t。
解得:
4<t<14/3。
②
直线PQ位于点C或点C左侧,并且F到直线PQ距离小于正方形边长|PQ|=2t-10。
即
8-t≤3,
4-(8-t)<2t-10。
解得:
t>6。
综上述,4<t<14/3 或 t>6。
(1)
将两直线的方程联立:
y=-(3/4)x+6,
y=(5/4)x,
解得: x=3, y=15/4,
即C点坐标为: C(3,15/4)。
(2)
由题意易知以下四点坐标:
A(8,0), E(8-t,0), P(8-t,3t/4), Q(8-t,10-5t/4)。
当0<t<5时, 3<8-t<8, 所以直线PQ位于点C右边, 所以,|PQ|=10-2t。
正方形PQMN或者有一部分在三角形ACD外,或者完全在三角形ACD内。
①正方形PQMN有一部分在三角形ACD外。
此时应有|PQ|>|AE|,即 10-2t>t,亦即 t<10/3。
此时,阴影部分面积
S=|PQ||AE|
=(10-2t)t
=-2t^2+10t
=-2(t-5/2)^2+25/2。
②正方形PQMN完全在三角形ACD内。
此时应有|PQ|≤|AE|,即 10-2t≤t,亦即 t≥10/3。
此时,阴影部分面积
S=|PQ|^2
=(10-2t)^2
=4(t-5)^2。
所以,0<t<5 时,
-2(t-5/2)^2+25/2, 0<t<10/3,
S =
4(t-5)^2, 10/3≤t<5。
(3)
①0<t<10/3:
此时,S=-2(t-5/2)^2+25/2,抛物线开口向下,对称轴 t=5/2∈(0,10/3),
t=5/2时,S取最大值25/2。
②10/3≤t<5:
此时,S=4(t-5)^2,抛物线开口向上,对称轴 t=5,
t=10/3 时,S取最大值100/9。
由①②知,当t=5/2时,S取得最大值25/2。
(4)
点F(4,9/2)的位置如图所示:
要使F在正方形内,有两种情况:
①
直线PQ在点C和点F之间,并且F到直线PQ距离小于正方形边长|PQ|。
即
3<8-t<4,
4-(8-t)<10-2t。
解得:
4<t<14/3。
②
直线PQ位于点C或点C左侧,并且F到直线PQ距离小于正方形边长|PQ|=2t-10。
即
8-t≤3,
4-(8-t)<2t-10。
解得:
t>6。
综上述,4<t<14/3 或 t>6。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询