已知f(x)=ax^2+bx+c,且f(1)=2,f`(0)=0,∫ ( 上1下-1) f(x)dx=-4,求a,b,c的值
展开全部
f(x) = ax² + bx + c
f(1) = 2 → a + b + c = 2
f'(x) = 2ax + b
f'(0) = 2a(0) + b = 0 → b = 0
∫(-1→1) f(x) dx = ∫(-1→1) (ax² + c) dx = - 4
ax³/3 + cx |(-1→1) = - 4
(a/3 + c) - (- a/3 - c) = - 4
{ 2a/3 + 2c = - 4
{ a + c = 2,将b = 0代入第二步得出
解方程得a = 6,c = - 4
∴a = 6,b = 0,c = - 4
f(1) = 2 → a + b + c = 2
f'(x) = 2ax + b
f'(0) = 2a(0) + b = 0 → b = 0
∫(-1→1) f(x) dx = ∫(-1→1) (ax² + c) dx = - 4
ax³/3 + cx |(-1→1) = - 4
(a/3 + c) - (- a/3 - c) = - 4
{ 2a/3 + 2c = - 4
{ a + c = 2,将b = 0代入第二步得出
解方程得a = 6,c = - 4
∴a = 6,b = 0,c = - 4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询