设函数f(x)>0连续,D是圆盘x^2+y^2<=x+y,则在D上的二次积分∫∫(af(x)+bf(y))/(f(x)+f(y)) dxdy等于?
1个回答
展开全部
圆方程x²+y²≤x+y可改写为:(x-1/2)²+(y-1/2)²≤1/2
积分区域关于x与y是轮换对称的,因此有
∫∫f(x)/[f(x)+f(y)]dxdy=∫∫f(y)/[f(x)+f(y)]dxdy
因此有:
∫∫f(x)/[f(x)+f(y)]dxdy=∫∫f(y)/[f(x)+f(y)]dxdy
=1/2{∫∫f(x)/[f(x)+f(y)]dxdy+∫∫f(y)/[f(x)+f(y)]dxdy}
=1/2∫∫[f(x)+f(y)]/[f(x)+f(y)]dxdy
=1/2∫∫1dxdy
被积函数为1,积分结果为区域面积,圆面积为:π/2
因此:∫∫f(x)/[f(x)+f(y)]dxdy=∫∫f(y)/[f(x)+f(y)]dxdy=π/4
原积分=∫∫(af(x)+bf(y))/(f(x)+f(y)) dxdy
=a∫∫f(x)/[f(x)+f(y)]dxdy+b∫∫f(y)/[f(x)+f(y)]dxdy
=πa/4+πb/4
=π(a+b)/4
积分区域关于x与y是轮换对称的,因此有
∫∫f(x)/[f(x)+f(y)]dxdy=∫∫f(y)/[f(x)+f(y)]dxdy
因此有:
∫∫f(x)/[f(x)+f(y)]dxdy=∫∫f(y)/[f(x)+f(y)]dxdy
=1/2{∫∫f(x)/[f(x)+f(y)]dxdy+∫∫f(y)/[f(x)+f(y)]dxdy}
=1/2∫∫[f(x)+f(y)]/[f(x)+f(y)]dxdy
=1/2∫∫1dxdy
被积函数为1,积分结果为区域面积,圆面积为:π/2
因此:∫∫f(x)/[f(x)+f(y)]dxdy=∫∫f(y)/[f(x)+f(y)]dxdy=π/4
原积分=∫∫(af(x)+bf(y))/(f(x)+f(y)) dxdy
=a∫∫f(x)/[f(x)+f(y)]dxdy+b∫∫f(y)/[f(x)+f(y)]dxdy
=πa/4+πb/4
=π(a+b)/4
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询