展开全部
已知函数f(x)=2(√3)sinxsin(π/2-x)+2cos²x+2,求f(x)的最小正周期与递减区间。
解:f(x)=2(√3)sinxsin(π/2-x)+2cos²x+2=2(√3)sinxcosx+(1+cos2x)+2
=(√3)sin2x+cos2x+3=2[(√3/2)sin2x+(1/2)cos2x]+3=2[sin2xcos(π/6)+cos2xsin(π/6)]+3
=2sin(2x+π/6)+3
最小正周期T=2π/2=π;
单减区间:由π/2+2kπ≦2x+π/6≦3π/2+2kπ,得π/3+2kπ≦2x≦4π/3+2kπ,于是得单减区间为:π/6+kπ≦x≦2π/3+kπ,K∈Z.
解:f(x)=2(√3)sinxsin(π/2-x)+2cos²x+2=2(√3)sinxcosx+(1+cos2x)+2
=(√3)sin2x+cos2x+3=2[(√3/2)sin2x+(1/2)cos2x]+3=2[sin2xcos(π/6)+cos2xsin(π/6)]+3
=2sin(2x+π/6)+3
最小正周期T=2π/2=π;
单减区间:由π/2+2kπ≦2x+π/6≦3π/2+2kπ,得π/3+2kπ≦2x≦4π/3+2kπ,于是得单减区间为:π/6+kπ≦x≦2π/3+kπ,K∈Z.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询