数学题:已知2*4分之2=2分之1减4分之1,求2*4分之1+4*6分之1+……+48*50分之1
4个回答
展开全部
根据2/(2×4)=1/2-1/4,我们同理可以构造2/(4×6)=1/4-1/6,…,2/[2n×2(n+1)]=1/n-1/(n+1)
则1/(2×4)+1/(4×6)+…+1/(48×50)
=1/2×2×[1/(2×4)+1/(4×6)+…+1/(48×50)]
=1/2×[2/(2×4)+2/(4×6)+…+2/(48×50)]
=1/2×(1/2-1/4+1/4-1/6+1/6-1/8…+1/48-1/50)
上述式子中,从第2项开始,到尾二项为止。双数项都可以跟后面的单数项相消,即相加为0.
例如-1/4+1/4=0,-1/6+1/6=0.
原式=1/2×(1/2-1/50)=1/2×24/50=6/25
则1/(2×4)+1/(4×6)+…+1/(48×50)
=1/2×2×[1/(2×4)+1/(4×6)+…+1/(48×50)]
=1/2×[2/(2×4)+2/(4×6)+…+2/(48×50)]
=1/2×(1/2-1/4+1/4-1/6+1/6-1/8…+1/48-1/50)
上述式子中,从第2项开始,到尾二项为止。双数项都可以跟后面的单数项相消,即相加为0.
例如-1/4+1/4=0,-1/6+1/6=0.
原式=1/2×(1/2-1/50)=1/2×24/50=6/25
来自:求助得到的回答
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
2/(2*4)=1/2+1/4
则1/(2*4)=(1/2-1/4)*(1/2)
同理:1/(6*4)=(1/4-1/6)*(1/2)
…………………………
1/(48*50)=(1/48-1/50)*(1/2)
所以
原式=(1/2+1/4)*(1/2)+(1/6+1/4)*(1/2)+………………+(1/48+1/50)*(1/2)
=1/2(1/2-1/4+1/4-1/6+…………+1/48-1/50)
=1/2(1/2-1/50)
=6/25
则1/(2*4)=(1/2-1/4)*(1/2)
同理:1/(6*4)=(1/4-1/6)*(1/2)
…………………………
1/(48*50)=(1/48-1/50)*(1/2)
所以
原式=(1/2+1/4)*(1/2)+(1/6+1/4)*(1/2)+………………+(1/48+1/50)*(1/2)
=1/2(1/2-1/4+1/4-1/6+…………+1/48-1/50)
=1/2(1/2-1/50)
=6/25
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
2012-05-03
展开全部
2/(2*4)=1/2+1/4
1/(2*4)=(1/2-1/4)*(1/2)
1/(6*4)=(1/4-1/6)*(1/2)
…………………………
1/(48*50)=(1/48-1/50)*(1/2)
原式=(1/2+1/4)*(1/2)+(1/6+1/4)*(1/2)+………………+(1/48+1/50)*(1/2)
=1/2(1/2-1/4+1/4-1/6+…………+1/48-1/50)
=1/2(1/2-1/50)
=6/25
1/(2*4)=(1/2-1/4)*(1/2)
1/(6*4)=(1/4-1/6)*(1/2)
…………………………
1/(48*50)=(1/48-1/50)*(1/2)
原式=(1/2+1/4)*(1/2)+(1/6+1/4)*(1/2)+………………+(1/48+1/50)*(1/2)
=1/2(1/2-1/4+1/4-1/6+…………+1/48-1/50)
=1/2(1/2-1/50)
=6/25
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询