三角形abc的三个内角a,b,c所对的边分别为a,b,c,asinasinb+bcos2a=根号2a

三角形abc的三个内角a,b,c所对的边分别为a,b,c,asinasinb+bcos2a=根号2a1.求a分之b2.若c²=b²+根号3a²... 三角形abc的三个内角a,b,c所对的边分别为a,b,c,asinasinb+bcos2a=根号2a
1.求a分之b
2.若c²=b²+根号3a²,求B。
展开
百度网友52e67311b
2012-05-06 · TA获得超过367个赞
知道答主
回答量:27
采纳率:0%
帮助的人:9.4万
展开全部
解:(1)根据正弦定理
a=2rsinA,b=2rsinB
其中r为外接圆的直径
代入得
2rsinAsinAsinB+2rsinB(cosA)^2=√2*2rsinA
[(sinA)^2+(cosA)^2]sinB=√2sinA
sinB/sinA=√2
代入得
b/a=√2

(Ⅱ)由余弦定理和C2=b2+√3 a2,得cosB= 1+√3 *a /2c
由(Ⅰ)知b2=2a2,故c2=(2+ √3)a2,
可得cos2B=1/2 ,又cosB>0,故cosB=√2/2
所以B=45°
慕野清流
2012-05-01 · TA获得超过3.6万个赞
知道大有可为答主
回答量:5141
采纳率:80%
帮助的人:2331万
展开全部
解:(Ⅰ)由正弦定理得,sin2AsinB+sinBcos2A=√2 sinA,
即sinB(sin2A+sin2B)= √2 sinA
∴sinB=√2 sinA,b/a = =√2
(Ⅱ)由余弦定理和C2=b2+√3 a2,得cosB= 1+√3 *a /2c
由(Ⅰ)知b2=2a2,故c2=(2+ √3)a2,
可得cos2B=1/2 ,又cosB>0,故cosB=√2/2
所以B=45°
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式