1/2+1/5+1/9+1/14+1/20+1/27+……+1/20099=?简算
1个回答
展开全部
1/2=1/(1+2-1)
1/5=1/(1+2+3-1)
1/9=1/(1+2+3+4-1)
1/14=1/(1+2+3+4+5-1)
…………
1/20099=1/(1+2+3+4+...+201-1)
第k项=1/[1+2+...(n+1)-1]
=1/[(n+1)(n+2)/2 -1]
=1/[(n²+3n+2-2)/2]
=1/[(n²+3n)/2]
=2/[n(n+3)]
=(2/3)[1/n -1/(n+3)]
1/2+1/5+...+1/20099
=(2/3)(1/1-1/4+1/2-1/5+...+1/200-1/203)
=(2/3)[(1/1+1/2+...+1/200)-(1/4+1/5+...+1/203)]
=(2/3)(1+1/2+1/3 -1/201-1/202-1/203)
=(2/3)[(267×202×203+201×100×203-201×202]/(201×202×203)
=4996100/4121103
1/5=1/(1+2+3-1)
1/9=1/(1+2+3+4-1)
1/14=1/(1+2+3+4+5-1)
…………
1/20099=1/(1+2+3+4+...+201-1)
第k项=1/[1+2+...(n+1)-1]
=1/[(n+1)(n+2)/2 -1]
=1/[(n²+3n+2-2)/2]
=1/[(n²+3n)/2]
=2/[n(n+3)]
=(2/3)[1/n -1/(n+3)]
1/2+1/5+...+1/20099
=(2/3)(1/1-1/4+1/2-1/5+...+1/200-1/203)
=(2/3)[(1/1+1/2+...+1/200)-(1/4+1/5+...+1/203)]
=(2/3)(1+1/2+1/3 -1/201-1/202-1/203)
=(2/3)[(267×202×203+201×100×203-201×202]/(201×202×203)
=4996100/4121103
本回答被网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询