(1-cost)5/2dt的积分怎么求
2个回答
展开全部
∫√(1-cost)^5 dt
=∫√[2sin(t/2)^2]^5 dt
=16√2∫|sin(t/2)|^5 dt
sin(t/2)>0
= -32√2∫[(sint/2)^2]^2dcos(t/2)
= -32√2∫1-2(cost/2)^2+(cost/2)^4 dcos(t/2)
=-32√2cos(t/2) +(64√2/3)(cost/2)^3-(32√2/5)(cost/2)^5+C
sint/2<0
=32√2cos(t/2)-(64√2/3)(cost/2)^3+(32√2/5)(cost/2)^5+C
=∫√[2sin(t/2)^2]^5 dt
=16√2∫|sin(t/2)|^5 dt
sin(t/2)>0
= -32√2∫[(sint/2)^2]^2dcos(t/2)
= -32√2∫1-2(cost/2)^2+(cost/2)^4 dcos(t/2)
=-32√2cos(t/2) +(64√2/3)(cost/2)^3-(32√2/5)(cost/2)^5+C
sint/2<0
=32√2cos(t/2)-(64√2/3)(cost/2)^3+(32√2/5)(cost/2)^5+C
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询