1个回答
展开全部
解:∫<0,1>[ln(1+x)/(1+x²)]dx=∫<0,π/4>[ln(1+tanz)/(1+tan²z)]*sec²zdz (令x=tanz)
=∫<0,π/4>ln(1+sinz/cosz)dz
=∫<0,π/4>ln[(sinz+cosz)/cosz]dz
=∫<0,π/4>[ln(sinz+cosz)-ln(cosz)]dz
=∫<0,π/4>ln(sinz+cosz)dz-∫<0,π/4>ln(cosz)dz
=∫<0,π/4>ln[√2sin(z+π/4)]dz-∫<0,π/4>ln(cosz)dz
=∫<0,π/4>ln(√2)dz+∫<0,π/4>ln[sin(z+π/4)]dz-∫<0,π/4>ln(cosz)dz
=(π/4)ln(√2)+∫<π/4,0>ln[sin(π/2-y)]d(-y)-∫<0,π/4>ln(cosz)dz
(在第二个积分中,令z=π/4-y)
=πln2/8+∫<0,π/4>ln(cosy)dy-∫<0,π/4>ln(cosz)dz
=πln2/8+∫<0,π/4>ln(cosz)dz-∫<0,π/4>ln(cosz)dz
(在第一个积分中,令z=y)
=πln2/8
=∫<0,π/4>ln(1+sinz/cosz)dz
=∫<0,π/4>ln[(sinz+cosz)/cosz]dz
=∫<0,π/4>[ln(sinz+cosz)-ln(cosz)]dz
=∫<0,π/4>ln(sinz+cosz)dz-∫<0,π/4>ln(cosz)dz
=∫<0,π/4>ln[√2sin(z+π/4)]dz-∫<0,π/4>ln(cosz)dz
=∫<0,π/4>ln(√2)dz+∫<0,π/4>ln[sin(z+π/4)]dz-∫<0,π/4>ln(cosz)dz
=(π/4)ln(√2)+∫<π/4,0>ln[sin(π/2-y)]d(-y)-∫<0,π/4>ln(cosz)dz
(在第二个积分中,令z=π/4-y)
=πln2/8+∫<0,π/4>ln(cosy)dy-∫<0,π/4>ln(cosz)dz
=πln2/8+∫<0,π/4>ln(cosz)dz-∫<0,π/4>ln(cosz)dz
(在第一个积分中,令z=y)
=πln2/8
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询