∫e^xsinxdx,(0-π/2);∫(x^5+x^3-x+1)sinx^2dx,(-π/4,π/4),求定积分,求过程,谢谢。
展开全部
∫(0→π/2) e^xsinx dx = - ∫(0→π/2) e^x dcosx
= - e^xcosx:(0→π/2) + ∫(0→π/2) e^xcosx dx,分部积分法
= 1 + ∫(0→π/2) e^x dsinx
= 1 + e^xsinx:(0→π/2) - ∫(0→π/2) e^xsinx dx
2∫(0→π/2) e^xsinx dx = 1 + e^(π/2)
==> ∫(0→π/2) e^xsinx dx = [1 + e^(π/2)]/2
∫(-π/4→π/4) (x⁵ + x³ - x + 1)sin²x dx
= ∫(-π/4→π/4) x⁵sin²x dx + ∫(-π/4→π/4) x³sin²x - ∫(-π/4→π/4) xsin²x + ∫(-π/4→π/4) sin²x dx
= 0 + 0 - 0 + 2∫(0→π/4) sin²x dx,前面三项奇函数,最后一项偶函数
= ∫(0→π/4) (1 - cos2x) dx
= x - (1/2)sin2x:(0→π/4)
= π/4 - 1/2
= - e^xcosx:(0→π/2) + ∫(0→π/2) e^xcosx dx,分部积分法
= 1 + ∫(0→π/2) e^x dsinx
= 1 + e^xsinx:(0→π/2) - ∫(0→π/2) e^xsinx dx
2∫(0→π/2) e^xsinx dx = 1 + e^(π/2)
==> ∫(0→π/2) e^xsinx dx = [1 + e^(π/2)]/2
∫(-π/4→π/4) (x⁵ + x³ - x + 1)sin²x dx
= ∫(-π/4→π/4) x⁵sin²x dx + ∫(-π/4→π/4) x³sin²x - ∫(-π/4→π/4) xsin²x + ∫(-π/4→π/4) sin²x dx
= 0 + 0 - 0 + 2∫(0→π/4) sin²x dx,前面三项奇函数,最后一项偶函数
= ∫(0→π/4) (1 - cos2x) dx
= x - (1/2)sin2x:(0→π/4)
= π/4 - 1/2
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询