二进制转十进制,十进制转二进制的算法(求助)
二进制转换为十进制:
方法:“按权展开求和”,该方法的具体步骤是先将二迸制的数写成加权系数展开式,而后根据十进制的加法规则进行求和 。
规律:个位上的数字的次数是0,十位上的数字的次数是1,......,依次递增,而十分位的数字的次数是-1,百分位上数字的次数是-2,......,依次递减。
十进制转换为二进制:
一个十进制数转换为二进制数要分整数部分和小数部分分别转换,最后再组合到一起。
整数部分采用 "除2取余,逆序排列"法。具体做法是:用2整除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为小于1时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。
小数部分要使用“乘 2 取整法”。即用十进制的小数乘以 2 并取走结果的整数(必是 0 或 1),然后再用剩下的小数重复刚才的步骤,直到剩余的小数为 0 时停止,最后将每次得到的整数部分按先后顺序从左到右排列即得到所对应二进制小数。
通用进制转换:
不同进制之间的转换本质就是确定各个不同权值位置上的数码。转换正整数的进制的有一个简单算法,就是通过用目标基数作长除法;余数给出从最低位开始的“数字”。
扩展资料:
1、十进制整数转二进制整数:
十进制整数转换为二进制整数 十进制整数转换为二进制整数采用"除2取余,逆序排列"法。具体做法是:用2去除十进制整数,可以得到一个商和余数;再用2去除商,又会得到一个商和余数,如此进行,直到商为零时为止,然后把先得到的余数作为二进制数的低位有效位,后得到的余数作为二进制数的高位有效位,依次排列起来。
2、十进制小数转换为二进制小数:
十进制小数转换成二进制小数采用"乘2取整,顺序排列"法。具体做法是:用2乘十进制小数,可以得到积,将积的整数部分取出,再用2乘余下的小数部分,又得到一个积,再将积的整数部分取出,如此进行,直到积中的小数部分为零,或者达到所要求的精度为止。
然后把取出的整数部分按顺序排列起来,先取的整数作为二进制小数的高位有效位,后取的整数作为低位有效位。
参考资料:百度百科-二进制
用2辗转相除至结果为1
将余数和最后的1从下向上倒序写 就是结果
例如302
302/2 = 151 余0
151/2 = 75 余1
75/2 = 37 余1
37/2 = 18 余1
18/2 = 9 余0
9/2 = 4 余1
4/2 = 2 余0
2/2 = 1 余0
故二进制为100101110
二进制转十进制
从最后一位开始算,依次列为第0、1、2...位
第n位的数(0或1)乘以2的n次方
得到的结果相加就是答案
例如:01101011.转十进制:
第0位:1乘2的0次方=1
1乘2的1次方=2
0乘2的2次方=0
1乘2的3次方=8
0乘2的4次方=0
1乘2的5次方=32
1乘2的6次方=64
0乘2的7次方=0
然后:1+2+0
+8+0+32+64+0=107.
二进制01101011=十进制107.
参考资料: http://zhidao.baidu.com/question/200254.html
2006-02-24
(1)二进制转十进制<BR>方法:"按权展开求和"
例:
(1011.01)2 =(1×23+0×22+1×21+1×20+0×2-1+1×2-2)10
=(8+0+2+1+0+0.25)10
=(11.25)10
(2)十进制转二进制
· 十进制整数转二进制数:"除以2取余,逆序输出"
例: (89)10=(1011001)2
2 89
2 44 …… 1
2 22 …… 0
2 11 …… 0
2 5 …… 1
2 2 …… 1
2 1 …… 0
0 …… 1
· 十进制小数转二进制数:"乘以2取整,顺序输出"
例:
(0.625)10= (0.101)2
0.625
X 2
1.25
X 2
0.5
X 2
1.0
2.八进制与二进制的转换
例:将八进制的37.416转换成二进制数:
37 . 4 1 6
011 111 .100 001 110
即:(37.416)8 =(11111.10000111)2
例:将二进制的10110.0011 转换成八进制:
0 1 0 1 1 0 . 0 0 1 1 0 0
2 6 . 1 4
即:(10110.011)2 =(26.14)8
3.十六进制与二进制的转换<BR>例:将十六进制数5DF.9 转换成二进制:
5 D F . 9
0101 1101 1111.1001
即:(5DF.9)16 =(10111011111.1001)2
例:将二进制数1100001.111 转换成十六进制:
0110 0001 . 1110
6 1 . E
即:(1100001.111)2 =(61.E)16