∫(1,0)xarctan√xdx=
2个回答
展开全部
换元,令√x=u,则x=u²,dx=2udu
∫(0---->1) xarctan√xdx
=∫(0---->1) u²arctanu*2udu
=2∫(0---->1) u³arctanudu
=(1/2)∫(0---->1) arctanud(u⁴)
=(1/2)∫(0---->1) arctanud(u⁴)
=(1/2)u⁴arctanu-(1/2)∫(0---->1) u⁴/(1+u²)du
=(1/2)u⁴arctanu-(1/2)∫(0---->1) (u⁴-1+1)/(1+u²)du
=(1/2)u⁴arctanu-(1/2)∫(0---->1) (u²-1)du-(1/2)∫(0---->1) 1/(1+u²)du
=(1/2)u⁴arctanu-(1/2)((1/3)u³-u)-(1/2)arctanu |(0---->1)
=(1/2)(π/4)-(1/2)(-2/3)-(1/2)(π/4)
=1/3
用数学软件验证过的,结果正确。
∫(0---->1) xarctan√xdx
=∫(0---->1) u²arctanu*2udu
=2∫(0---->1) u³arctanudu
=(1/2)∫(0---->1) arctanud(u⁴)
=(1/2)∫(0---->1) arctanud(u⁴)
=(1/2)u⁴arctanu-(1/2)∫(0---->1) u⁴/(1+u²)du
=(1/2)u⁴arctanu-(1/2)∫(0---->1) (u⁴-1+1)/(1+u²)du
=(1/2)u⁴arctanu-(1/2)∫(0---->1) (u²-1)du-(1/2)∫(0---->1) 1/(1+u²)du
=(1/2)u⁴arctanu-(1/2)((1/3)u³-u)-(1/2)arctanu |(0---->1)
=(1/2)(π/4)-(1/2)(-2/3)-(1/2)(π/4)
=1/3
用数学软件验证过的,结果正确。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |