如图,C为线段AE上一动点(不与点A、E重合).在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于H,AD与BC

如图,C为线段AE上一动点(不与点A、E重合).在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于H,AD与BC交于P,BE与CD交于Q,连接PQ、CH.则∠AH... 如图,C为线段AE上一动点(不与点A、E重合).在AE同侧分别作等边△ABC和等边△CDE,AD与BE交于H,AD与BC交于P,BE与CD交于Q,连接PQ、CH.则∠AHC=∠CHE吗?并说明理由? 展开
mbcsjs
2012-05-03 · TA获得超过23.4万个赞
知道顶级答主
回答量:7.6万
采纳率:77%
帮助的人:3.2亿
展开全部
在△ACD和△BCE中
∵△ABC和△CDE是等边△
∴BC=AC CE=CD
∠BCA=∠BAC=∠ABC=∠DCE=∠DEC=∠CDE=60°
∴∠BCA+∠BCD=∠DCE+∠BCD 即∠ACD=∠BCE
∴△ACD≌△BCE
∴∠ADC=∠BEC ∠CBE=∠CAD
在△DQH和△CEQ中
∠ADC=∠BEC ∠HQD=∠CQE
∴ △DQH∽△CEQ
∴HQ/CQ=DQ/EQ 即HQ×EQ=CQ×DQ
∴C、E、D、H四点共圆
∴∠CHE=∠CDE=60°
同理在△ACP与△BPH中证明相似
得BP×PC=AP×PH
得A、C、H、B四点共圆
∠ABC=∠AHC=60°
∴∠AHC=∠CHE
追问
因为HQ×EQ=CQ×DQ所以C、E、D、H四点共圆,初中现在有这个托勒密定理的逆定理么?
追答
这个不是托勒密定理的逆定理,这个是根据相交弦定理​的逆定理证明的
快30年没有教数学了,对现在的教材不熟悉。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式