商业领域数据挖掘是如何诞生的

 我来答
书尽胸臆
高粉答主

2020-12-30 · 精读书,爱读书,分享书,书中自有颜如玉,书中自有黄金屋
书尽胸臆
采纳数:730 获赞数:58960

向TA提问 私信TA
展开全部

20世纪90年代,随着数据库系统的广泛应用和网络技术的高速发展,数据库技术也进入一个全新的阶段,即从过去仅管理一些简单数据发展到管理由各种计算机所产生的图形、图像、音频、视频、电子档案、Web页面等多种类型的复杂数据,并且数据量也越来越大。

数据库在给我们提供丰富信息的同时,也体现出明显的海量信息特征。信息爆炸时代,海量信息给人们带来许多负面影响,最主要的就是有效信息难以提炼,过多无用的信息必然会产生信息距离(信息状态转移距离)是对一个事物信息状态转移所遇到障碍的测度,简称DIST或DIT)和有用知识的丢失。

这也就是约翰·内斯伯特( John Nalsbert)称为的“信息丰富而知识贫乏”窘境。因此,人们迫切希望能对海量数据进行深入分析,发现并提取隐藏在其中的信息,以更好地利用这些数据。

但仅以数据库系统的录入、查询、统计等功能,无法发现数据中存在的关系和规则,无法根据现有的数据预测未来的发展趋势,更缺乏挖掘数据背后隐藏知识的手段。正是在这样的条件下,数据挖掘技术应运而生。

扩展资料

数据挖掘过程模型步骤主要包括定义问题、建立数据挖掘库、分析数据、准备数据、建立模型、评价模型和实施。下面让我们来具体看一下每个步骤的具体内容:

(1)定义问题。在开始知识发现之前最先的也是最重要的要求就是了解数据和业务问题。必须要对目标有一个清晰明确的定义,即决定到底想干什么。

比如,想提高电子信箱的利用率时,想做的可能是“提高用户使用率”,也可能是“提高一次用户使用的价值”,要解决这两个问题而建立的模型几乎是完全不同的,必须做出决定。

(2)建立数据挖掘库。建立数据挖掘库包括以下几个步骤:数据收集,数据描述,选择,数据质量评估和数据清理,合并与整合,构建元数据,加载数据挖掘库,维护数据挖掘库。

(3)分析数据。分析的目的是找到对预测输出影响最大的数据字段,和决定是否需要定义导出字段。如果数据集包含成百上千的字段,那么浏览分析这些数据将是一件非常耗时和累人的事情,这时需要选择一个具有好的界面和功能强大的工具软件来协助你完成这些事情。

(4)准备数据。这是建立模型之前的最后一步数据准备工作。可以把此步骤分为四个部分:选择变量,选择记录,创建新变量,转换变量。

(5)建立模型。建立模型是一个反复的过程。需要仔细考察不同的模型以判断哪个模型对面对的商业问题最有用。先用一部分数据建立模型,然后再用剩下的数据来测试和验证这个得到的模型。

有时还有第三个数据集,称为验证集,因为测试集可能受模型的特性的影响,这时需要一个独立的数据集来验证模型的准确性。训练和测试数据挖掘模型需要把数据至少分成两个部分,一个用于模型训练,另一个用于模型测试。

(6)评价模型。模型建立好之后,必须评价得到的结果、解释模型的价值。从测试集中得到的准确率只对用于建立模型的数据有意义。在实际应用中,需要进一步了解错误的类型和由此带来的相关费用的多少。

经验证明,有效的模型并不一定是正确的模型。造成这一点的直接原因就是模型建立中隐含的各种假定,因此,直接在现实世界中测试模型很重要。先在小范围内应用,取得测试数据,觉得满意之后再向大范围推广。

(7)实施。模型建立并经验证之后,可以有两种主要的使用方法。第一种是提供给分析人员做参考;另一种是把此模型应用到不同的数据集上。

百度网友f3200a4
高粉答主

2020-12-28 · 醉心答题,欢迎关注
知道小有建树答主
回答量:1014
采纳率:100%
帮助的人:26.7万
展开全部

20世纪90年代,随着数据库系统的广泛应用和网络技术的高速发展,数据库技术也进入一个全新的阶段,即从过去仅管理一些简单数据发展到管理由各种计算机所产生的图形、图像、音频、视频、电子档案、Web页面等多种类型的复杂数据,并且数据量也越来越大。

数据库在给我们提供丰富信息的同时,也体现出明显的海量信息特征。信息爆炸时代,海量信息给人们带来许多负面影响,最主要的就是有效信息难以提炼。

过多无用的信息必然会产生信息距离(信息状态转移距离)是对一个事物信息状态转移所遇到障碍的测度,简称DIST或DIT)和有用知识的丢失。这也就是约翰·内斯伯特( John Nalsbert)称为的“信息丰富而知识贫乏”窘境。



扩展资料:

数据挖掘的对象

数据的类型可以是结构化的、半结构化的,甚至是异构型的。发现知识的方法可以是数学的、非数学的,也可以是归纳的。最终被发现了的知识可以用于信息管理、查询优化、决策支持及数据自身的维护等。

数据挖掘的对象可以是任何类型的数据源。可以是关系数据库,此类包含结构化数据的数据源;也可以是数据仓库、文本、多媒体数据、空间数据、时序数据、Web数据,此类包含半结构化数据甚至异构性数据的数据源。

发现知识的方法可以是数字的、非数字的,也可以是归纳的。最终被发现的知识可以用于信息管理、查询优化、决策支持及数据自身的维护等。



本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
换昵称很难呀
2012-05-04 · 超过66用户采纳过TA的回答
知道小有建树答主
回答量:198
采纳率:100%
帮助的人:159万
展开全部
数据挖掘最关键的目的就是为了增加销售量 ,更多的卖出东西。就如同楼上说的啤酒鱼尿布的故事。这是沃尔玛数据挖掘的一个真实案例。结果是啤酒和尿布都“双双走高”。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
辣比萨
2012-05-03 · TA获得超过1559个赞
知道小有建树答主
回答量:964
采纳率:0%
帮助的人:527万
展开全部
有个传说:沃尔玛啤酒和尿布的故事,讲这个故事的人只是想吸引更多的注意而已。

事实上,数据挖掘,作为统计学的一个分支(或统计与计算机科学的交叉),天然就和商业数据联系着。
传统财务盘点中,企业会根据自己的商业数据进行统计分析,根据分析结果决定在哪一类开销中加大预算 或 预测未来的行情,这本身就是在做数据挖掘。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式