∫(2,1)lnxdx与∫(2,1)(lnx)^3dx比较大小

我不是他舅
2012-05-03 · TA获得超过138万个赞
知道顶级答主
回答量:29.6万
采纳率:79%
帮助的人:38.6亿
展开全部
0<1<2<e
所以1<x<2,
0<lnx<1

幂函数中
0<x<1时,x^a当a越大,则x^a越小
即图像上越低
所以∫(2,1)lnxdx>∫(2,1)(lnx)^3dx
追问
怎么看出0<lnx<1
追答
0<1<2<e
ln递增
网易云信
2023-12-06 广告
UIkit是一款轻量级、模块化、基于jQuery的UI框架,它提供了大量易于使用的UI组件,包括按钮、表单、表格、对话框、通知等等。UIkit的设计理念是尽可能地简洁和灵活,开发者可以根据自己的需求自由地选择需要的组件和样式,从而快速构建出... 点击进入详情页
本回答由网易云信提供
tllau38
高粉答主

2012-05-03 · 关注我不会让你失望
知道顶级答主
回答量:8.7万
采纳率:73%
帮助的人:2.4亿
展开全部
∫(2,1)lnxdx
=[xlnx](2,1) - ∫(2,1) dx
= 2ln2 - (2-1)
=2ln2-1
=0.3863

∫(2,1)(lnx)^3dx
=[x(lnx)^3](2,1) - 3∫(2,1)(lnx)^2dx
=2(ln2)^3-3[x(lnx)^2](2,1) + 6∫(2,1)(lnx)dx
=2(ln2)^3 - 6(ln2)^2+ 6[xlnx](2,1)-6∫(2,1)dx
=2(ln2)^3 - 6(ln2)^2+12ln2- 6
=0.1011
ie ∫(2,1)lnxdx >∫(2,1)(lnx)^3dx

"Or"
for (1,2)
lnx > (lnx)^3
=> ∫(2,1)lnxdx > ∫(2,1)(lnx)^3dx
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式