
∫(2,1)lnxdx与∫(2,1)(lnx)^3dx比较大小
2个回答
展开全部
0<1<2<e
所以1<x<2,
0<lnx<1
幂函数中
0<x<1时,x^a当a越大,则x^a越小
即图像上越低
所以∫(2,1)lnxdx>∫(2,1)(lnx)^3dx
所以1<x<2,
0<lnx<1
幂函数中
0<x<1时,x^a当a越大,则x^a越小
即图像上越低
所以∫(2,1)lnxdx>∫(2,1)(lnx)^3dx
追问
怎么看出0<lnx<1
追答
0<1<2<e
ln递增

2023-12-06 广告
UIkit是一款轻量级、模块化、基于jQuery的UI框架,它提供了大量易于使用的UI组件,包括按钮、表单、表格、对话框、通知等等。UIkit的设计理念是尽可能地简洁和灵活,开发者可以根据自己的需求自由地选择需要的组件和样式,从而快速构建出...
点击进入详情页
本回答由网易云信提供
展开全部
∫(2,1)lnxdx
=[xlnx](2,1) - ∫(2,1) dx
= 2ln2 - (2-1)
=2ln2-1
=0.3863
∫(2,1)(lnx)^3dx
=[x(lnx)^3](2,1) - 3∫(2,1)(lnx)^2dx
=2(ln2)^3-3[x(lnx)^2](2,1) + 6∫(2,1)(lnx)dx
=2(ln2)^3 - 6(ln2)^2+ 6[xlnx](2,1)-6∫(2,1)dx
=2(ln2)^3 - 6(ln2)^2+12ln2- 6
=0.1011
ie ∫(2,1)lnxdx >∫(2,1)(lnx)^3dx
"Or"
for (1,2)
lnx > (lnx)^3
=> ∫(2,1)lnxdx > ∫(2,1)(lnx)^3dx
=[xlnx](2,1) - ∫(2,1) dx
= 2ln2 - (2-1)
=2ln2-1
=0.3863
∫(2,1)(lnx)^3dx
=[x(lnx)^3](2,1) - 3∫(2,1)(lnx)^2dx
=2(ln2)^3-3[x(lnx)^2](2,1) + 6∫(2,1)(lnx)dx
=2(ln2)^3 - 6(ln2)^2+ 6[xlnx](2,1)-6∫(2,1)dx
=2(ln2)^3 - 6(ln2)^2+12ln2- 6
=0.1011
ie ∫(2,1)lnxdx >∫(2,1)(lnx)^3dx
"Or"
for (1,2)
lnx > (lnx)^3
=> ∫(2,1)lnxdx > ∫(2,1)(lnx)^3dx
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询