limx->1求极限(x/x-1 - 1/lnx)
展开全部
limx->1 (x/x-1 - 1/lnx)
=limx->1 (xlnx-x+1)/[(x-1)lnx] (0/0)
=limx->1 lnx/[lnx+(x-1)/x]
=limx->1 xlnx/[xlnx+(x-1)] (0/0)
=limx->1 (lnx+1)/[lnx+2]
=1/2
=limx->1 (xlnx-x+1)/[(x-1)lnx] (0/0)
=limx->1 lnx/[lnx+(x-1)/x]
=limx->1 xlnx/[xlnx+(x-1)] (0/0)
=limx->1 (lnx+1)/[lnx+2]
=1/2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
华瑞RAE一级代理商
2024-04-11 广告
2024-04-11 广告
impulse-4-xfxx是我们广州江腾智能科技有限公司研发的一款先进产品,它结合了最新的技术创新和市场需求。此产品以其卓越的性能和高效的解决方案,在行业内树立了新的标杆。impulse-4-xfxx不仅提升了工作效率,还为用户带来了更优...
点击进入详情页
本回答由华瑞RAE一级代理商提供
展开全部
lim(x->1)[ x/(x-1) - 1/lnx ]
=lim(x->1) [xlnx-(x-1)]/[(x-1)lnx] (0/0)
= lim(x->1) [ (1+lnx-1) / (lnx + (x-1)/x) ]
= lim(x->1) [ xlnx/(xlnx+(x-1) ] (0/0)
= lim(x->1) [ (lnx+1)/(x+1+1) ]
=1/2
=lim(x->1) [xlnx-(x-1)]/[(x-1)lnx] (0/0)
= lim(x->1) [ (1+lnx-1) / (lnx + (x-1)/x) ]
= lim(x->1) [ xlnx/(xlnx+(x-1) ] (0/0)
= lim(x->1) [ (lnx+1)/(x+1+1) ]
=1/2
本回答被提问者采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询