如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于E、F。求证:四边形AFCE是菱形吗?
7个回答
展开全部
证明:∵四边形ABCD是平行四边形,
∴AD∥BC,即AE∥FC.
∴∠OAE=∠OCF.
∵∠AOE=∠COF=90°,AO=CO,
∴△AOE≌△COF(ASA),
∴AE=CF,
∴四边形AFCE是平行四边形.
∵EF⊥AC于O,
∴平行四边形AFCE是菱形.
∴AD∥BC,即AE∥FC.
∴∠OAE=∠OCF.
∵∠AOE=∠COF=90°,AO=CO,
∴△AOE≌△COF(ASA),
∴AE=CF,
∴四边形AFCE是平行四边形.
∵EF⊥AC于O,
∴平行四边形AFCE是菱形.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
证明:
设EF与AC的交点为O
∵EF垂直平分AC
∴EA=EC
∵AD∥BC
∴∠AEO=∠CFO,∠EAO=∠FCO
∵AO=CO
∴△AOE≌△COF
∴AE=CF
∵AE∥CF
∴四边形AECF是平行四边形
∵AE=CE
∴四边形AECF是菱形
设EF与AC的交点为O
∵EF垂直平分AC
∴EA=EC
∵AD∥BC
∴∠AEO=∠CFO,∠EAO=∠FCO
∵AO=CO
∴△AOE≌△COF
∴AE=CF
∵AE∥CF
∴四边形AECF是平行四边形
∵AE=CE
∴四边形AECF是菱形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
设EF与AC的交点为O
∵EF垂直平分AC
∴EA=EC
∵AD∥BC
∴∠AEO=∠CFO,∠EAO=∠FCO
∵AO=CO
∴△AOE≌△COF
∴AE=CF
∵AE∥CF
∴四边形AECF是平行四边形
∵AE=CE
∴四边形AECF是菱形
∵EF垂直平分AC
∴EA=EC
∵AD∥BC
∴∠AEO=∠CFO,∠EAO=∠FCO
∵AO=CO
∴△AOE≌△COF
∴AE=CF
∵AE∥CF
∴四边形AECF是平行四边形
∵AE=CE
∴四边形AECF是菱形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
EF与AC的交点为O
∵EF垂直平分AC
∴EA=EC
∵AD∥BC
∴∠AEO=∠CFO,∠EAO=∠FCO
∵AO=CO
∴△AOE≌△COF
∴AE=CF
∵AE∥CF
∴四边形AECF是平行四边形
∵AE=CE
∴四边形AECF是菱形
∵EF垂直平分AC
∴EA=EC
∵AD∥BC
∴∠AEO=∠CFO,∠EAO=∠FCO
∵AO=CO
∴△AOE≌△COF
∴AE=CF
∵AE∥CF
∴四边形AECF是平行四边形
∵AE=CE
∴四边形AECF是菱形
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询