如果多项式x^3+mx可分解因式为x(x+n)(x-1/2),那么mn的值为多少
3个回答
展开全部
x(x+n)(x-1/2)
=x³+(n-1/2)x²-nx/2
n-1/2=0 n=1/2
-n/2=m=-1/4
mn=1/2×(-1/4)=-1/8
=x³+(n-1/2)x²-nx/2
n-1/2=0 n=1/2
-n/2=m=-1/4
mn=1/2×(-1/4)=-1/8
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
x(x+n)(x-1/2)
=x[x²+(n-1/2)x-n/2)
=x³+(n-1/2)x²-nx/2
=x³+mx
所以n-1/2=0
-n/2=m
所以n=1/2
m=-n/2=-1/4
=x[x²+(n-1/2)x-n/2)
=x³+(n-1/2)x²-nx/2
=x³+mx
所以n-1/2=0
-n/2=m
所以n=1/2
m=-n/2=-1/4
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询