四道数学分析求极限的题,详细点,谢谢!
2个回答
展开全部
1. x=1/n
lim(x->0)[cosx-e^(-xx/2)]/x^4
=lim(x->0)【1-x^2/2!+x^4/4!-1+x^2/2!-x^4/(2!4)+o(x^5)】/x^4
=-1/12
2.取对数
lny=(2x-1)[ln(2+64^(1/x))-ln3] x替换n
罗比达法则=>极限=16
3.lim(x->0)[e^x-(1+2x)^(1/2)]/ln(1+x^2)
=lim(x->0)[e^x-(1+2x)^(1/2)]/x^2
=lim(x->0)[e^x-(1+2x)^(-1/2)]/(2x)
=lim(x->0)(1+2x)^(-1/2)* lim(x->0)[e^x(1+2x)^(1/2)-1]/(2x)
=1
4.x->0+ ,右侧极限 1 ;x->0- ,左侧极限 -1
lim(x->0)[cosx-e^(-xx/2)]/x^4
=lim(x->0)【1-x^2/2!+x^4/4!-1+x^2/2!-x^4/(2!4)+o(x^5)】/x^4
=-1/12
2.取对数
lny=(2x-1)[ln(2+64^(1/x))-ln3] x替换n
罗比达法则=>极限=16
3.lim(x->0)[e^x-(1+2x)^(1/2)]/ln(1+x^2)
=lim(x->0)[e^x-(1+2x)^(1/2)]/x^2
=lim(x->0)[e^x-(1+2x)^(-1/2)]/(2x)
=lim(x->0)(1+2x)^(-1/2)* lim(x->0)[e^x(1+2x)^(1/2)-1]/(2x)
=1
4.x->0+ ,右侧极限 1 ;x->0- ,左侧极限 -1
追问
第二题我就是不会用罗比达法则 怎么用的 能不能详细点?
追答
lim(x->∞)lny=
.lim(x->∞)(2x-1)[ln(2+64^(1/x))-ln3]
=.lim(x->∞)[ln(2+64^(1/x))-ln3]/[1/(2x-1)]
=lim(x->∞)【[64^(1/x)ln(64)]/[2+64^(1/x)]】.lim(x->∞) 【(-1/x^2)/[-2/(2x-1)^2]】
=ln(64)/3 * 2
=ln(16)
原式=16(实际解题中还可以把指数上的2,-1放到一边,就更简单)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询